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Abstract

This thesis focuses on various notions of moment maps in multisymplectic
geometry. In particular, it compares two existing notions of Lie algebra
moment maps in multisymplectic geometry, introduces and studies properties
of Lie 2-algebra moment maps in multisymplectic geometry, and finally,
provides examples of the above-mentioned various moment maps, including the
construction of a moment map for a new class of multisymplectic manifolds,
i.e., the generalization of coadjoint orbits to multisymplectic geometry.
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Beknopte samenvatting

Dit proefschrift richt zich op verschillende noties van momentafbeeldingen
in multisymplectische meetkunde. In het bijzonder worden twee bestaande
noties van Lie-algebra-momentafbeeldingen in multisymplectische meetkunde
vergeleken en de eigenschappen van Lie 2-algebra-momentafbeeldingen in
multisymplectische meetkunde geïntroduceerd en bestudeerd. Ten slotte worden
voorbeelden van de bovengenoemde verschillende momentafbeeldingen gegeven,
inclusief de constructie van een momentafbeelding voor een nieuwe klasse
van multisymplectische variëteiten, namelijk de veralgemening van coadjuncte
orbieten naar multisymplectische meetkunde.
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Chapter 1

Introduction

As the title suggests, this thesis is about moment maps in multisymplectic
geometry. In this introduction, we will try to provide context, motivate the
questions that lead to this thesis, and explain the results obtained.

Multisymplectic, or n-plectic, geometry is the generalization of symplectic
geometry, the latter corresponding to n = 1. Symplectic geometry is the study
of smooth manifolds equipped with a closed nondegenerate 2-form. It originated
in the Hamiltonian formulation of classical mechanics, where the phase space
of a physical system is a symplectic manifold, and the solutions of equations
of motion are curves tangent to certain vector fields. The symplectic form is
needed to associate such a vector field to functions on phase space (see §2.1).

Multisymplectic geometry arose from the attempts to formulate classical field
theory in a similar way, first appearing in the works of W. M. Tulczyjew, J.
Kijowski and W. Szczyrba in [33] and [34]. The multiphase space of such a
theory is an n-plectic manifold, that is, a smooth manifold equipped with a
closed nondegenerate (n + 1)-form. Just as solutions of the field equations
correspond to curves in symplectic geometry, where n = 1, the solutions in
n-plectic geometry correspond to "n-curves" ([26]), i.e., "curves parameterized
by n-dimensional spacetime". The (n+ 1)-form then associates to a function
on multiphase space an n-vector field that is tangent to the n-curve that is the
solution of the field equations.1

The modern definition of the symplectic moment map was introduced by J.
1Some authors choose to associate a vector field to an n-form instead, where the latter plays

the form of Hamiltonian density. However, this approach seems more difficult to characterize
geometrically. We thank Antonio Miti for pointing this out to us.
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2 INTRODUCTION

M. Souriau ([57]). This definition relating the Lie algebra of symmetries of a
symplectic manifold to the Lie algebra of its smooth functions (called the Lie
algebra of observables) generalized the already known examples of linear and
angular momentum from classical physics (hence the name), and turned out to
have many applications in both physics and mathematics (see §2.4).

The natural question of generalizing this notion to multisymplectic geometry
has led to multiple definitions listed in §3.4. This thesis focuses on 2 notions
of n-plectic moment maps that generalize other definitions existing in the
literature.

The first one is the homotopy moment map introduced by M. Callies, Y. Fregier,
C. L. Rogers and M. Zambon in [7]. Just as the symplectic moment map relates
the Lie algebra of symmetries of a symplectic manifold to its Lie algebra of
observables, the homotopy moment map relates the Lie algebra of symmetries
of an n-plectic manifold to its algebra of observables. The difference is that in
the case of an n-plectic manifold, its algebra of observables is not a Lie algebra,
but something called an L∞-algebra (see §3.3.3).

Another generalization of the symplectic moment map we consider is the weak
moment map introduced by J. Herman in [29] and [30]. This map is obtained
by ignoring the last equation in the definition of a homotopy moment map and
restricting the domain to something called the Lie kernel (see §2.2.3). Thus,
a homotopy moment map is an example of a weak moment map. However,
there are situations where a weak moment map exists, but a homotopy moment
map does not. We compare the two notions in §4; in particular, we investigate
when the existence of a weak moment map implies the existence of a homotopy
moment map.

Situations where a homotopy moment map doesn’t exist lead to another
phenomenon: the existence of "homotopy moment maps" for something called
central extensions2 of Lie algebras of symmetries (see §2.2.4, §2.4.3.3, §3.2.1.1,
and §3.4.3.1). When the manifold under consideration is n-plectic, the
corresponding central extension of the Lie algebra of symmetries is a Lie
n-algebra (see §3.2.1). Thus, we naturally arrive at the notion of a "homotopy
moment map" whose domain of definition is a Lie n-algebra rather than a Lie
algebra. This naturally leads us to investigate more general "homotopy moment
maps" from Lie n-algebras (i.e., not only the ones that are central extensions of
Lie algebras) in §5.

2Such a situation in symplectic geometry corresponds to what is known as "classical
anomaly" in mechanics.
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1.0.1 Structure of the thesis

This thesis consists of an introduction and four chapters. The four chapters
comprise the mathematical content of the thesis: the first two consisting mostly
of background material (with the exception of the material in §3.3.1.1, §3.4.2.1),
and the last two containing original results. Every chapter begins with an
introduction, where a brief history of the main concepts is given.

Chapter 2 tells the story of symplectic geometry and the symplectic moment
map. It provides all the necessary mathematical background: from Lie group
and Lie algebra actions to definition and examples of symplectic manifolds to
definition, examples, and properties of symplectic moment maps.

Chapter 3 introduces multisymplectic geometry and homotopy moment
maps. The structure of Chapter 3 mirrors the structure of Chapter 2 while
noting important differences between similar concepts in symplectic and
multisymplectic geometry. There is an important caveat: Chapter 3 starts with
an introduction to L∞-algebras, which may give an impression that we will be
looking at actions of L∞-algebras. This is not the case: even in multisymplectic
geometry, we investigate actions of ordinary Lie groups and Lie algebras. The
only original material in this chapter is presented in §3.3.1.1 and §3.4.2.1.

Chapter 4 introduces weak moment maps, following [29], and compares weak
moment maps and homotopy moment maps, providing illustrative examples.
This chapter is based on work ([43]) done in collaboration with Leonid Ryvkin.

Chapter 5 tells the story of Lie 2-algebra moment maps. As noted before, in
this setting we still consider actions of Lie groups/algebras, i.e., a Lie algebra
morphism g → X(M). However, we will be interested in the lifts of this
morphism to a morphism whose domain of definition is a Lie 2-algebra. This
chapter is based on work ([44]) done in collaboration with my advisor Marco
Zambon.

1.0.2 Results

Below we summarize the results obtained in the thesis.

Chapter 4

The contents of this chapter are based on a preprint co-authored by the author
of the thesis and Leonid Ryvkin.

To introduce the main result of Chapter 4, we first give the following definitions.



4 INTRODUCTION

Definition 1.0.1. [7, Def. 5.1] Let g→ X(M), x 7→ vx be a Lie algebra action
on an n-plectic manifold (M,ω). A homotopy moment map for this action is an
L∞-morphism {fk} : g→ L∞(M,ω), such that −ιvxω = d(f1(x)) for all x ∈ g.

In other words, it is a collection of maps {fk}, 1 ≤ k ≤ n+ 1 such that for all
p ∈ ∧kg:

−fk−1(δk(p)) = d(fk(p)) + ζ(k)ιvpω (1.1)

f0 = fn+1 = 0, (1.2)

where δk is the k-th Lie algebra homology differential (Definition 2.2.35), vp
is the fundamental vector field corresponding to p (Definition 2.2.20), and for
k ∈ N, ζ(k) is given by ζ(k) := −(−1)

k(k+1)
2 .

Definition 1.0.2. [30, Def. 3.11] Let g → X(M), x 7→ vx be a Lie algebra
action on an n-plectic manifold (M,ω) by Hamiltonian vector fields. A weak
(homotopy) moment map is a collection of linear maps f̂k : Pk,g → Ωn−k(M),
where 1 ≤ k ≤ n, satisfying

d(f̂k(p)) = −ζ(k)ιvpω

for k ∈ 1, ..., n and all p ∈ Pk,g, where Pk,g is the subspace of ∧kg that consist
of elements in the kernel of δk.

The main result of Chapter 4 is given by Theorem 4.3.3. It follows from
comparing the two definitions above, that existence of a homotopy moment map
implies existence of a weak moment map. Theorem 4.3.3 answers the question
of whether the reverse implication holds. It turns out that it does, given the
following map vanishes identically:

φ : Pn+1,g → C∞(M), p 7→ ιvpω. (1.3)

Theorem 1.0.3. (Thm. 4.3.3) Let (M,ω) be an n-plectic manifold, and let g
act on (M,ω) by preserving ω. The following statements are equivalent:

1. The action of g on (M,ω) admits a homotopy moment map

2. The action of g on (M,ω) admits a weak moment map and φ ∈ P ∗n+1,g ⊗
C∞(M) given by (1.3) vanishes identically.

Lemma 4.3.2 connects the map φ to a (n+ 1)-cocycle introduced in [7].
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Since a homotopy moment map gives a weak moment map by restriction, and
the existence of a weak moment map together with the vanishing of φ defined
in (1.3) imply the existence of a homotopy moment map, a natural question is
whether every weak moment map is a restriction of a homotopy moment map if
φ = 0. Proposition 4.4.1 answers this question negatively:

Proposition 1.0.4. (Prop. 4.4.1) Let f̂ be a weak moment map, and φ = 0.
There exists a well-defined class [γ]

d̃tot
∈ Hn+1(C̃) such that the following are

equivalent:

1. [γ]
d̃tot

= 0 and γ admits a primitive in
⊕n

k=1 dg(Λkg∗)⊗ Ωn−k−1(M)

2. There exists a homotopy moment map f̃ , such that f̃ |Pg
= f̂ .

Finally, following results of [18] and [53], Proposition 4.2.4 and Theorem 4.5.6
phrase existence of weak moment maps and equivariant weak moment maps in
terms of the cohomology of a certain double complex (and its subcomplex, in
the case of equivariant weak moment maps).

Theorem 1.0.5. Let g act on (M,ω) by preserving ω. The action admits

1. a weak moment map if and only if [ω̂] ∈ Hn+1(Ĉ)

2. a g-equivariant weak moment map if and only if [ω̂] = 0 ∈ H(Ĉg)

Moreover, the respective moment maps are in one-to-one correspondence with
potentials of the respective cohomology classes.

Chapter 5

The contents of this chapter are based on a paper co-authored by the author of
the thesis and Marco Zambon.

As mentioned before, if a homotopy moment map for a given Lie algebra g
acting on an n-plectic manifold (M,ω) by Hamiltonian vector fields doesn’t
exist, it exists for a central n-extension of g ([7, Prop. 9.10]). Since central
n-extensions are Lie n-algebras, this motivates us to look at "homotopy moment
maps" whose domain of definition is an arbitrary Lie n-algebra. Another reason
to consider more general objects than a Lie algebra g as the domain is that
a homotopy moment map is a morphism in the category of L∞-algebras, and
there is no a priori reason to restrict ourselves to considering maps from Lie
algebras rather than general L∞-algebras.



6 INTRODUCTION

In Chapter 5 we consider homotopy moment maps from a Lie 2-algebra h⊕ g
into the Lie 2-algebra (L∞(M,ω), d, [ , ]′, [ , , ]′) of observables of a 2-plectic
manifold. Extending the definition of a homotopy moment map ([7, Def.5.1]),
we define:

Definition 1.0.6. A homotopy moment map for the Lie 2-algebra h⊕g (or h⊕g
moment map for short) is an L∞-morphism (f1, f2) from (h⊕ g, δ, [ , ], [ , , ])
to (L∞(M,ω), d, [ , ]′, [ , , ]′) such that for all x ∈ g

−ιvxω = d(f1(x)).

In §5.3 we show, following [18] and [53], that homotopy moment maps for Lie
2-algebras correspond to primitives of a certain element ω̃ in a complex (C, dtot)
that is constructed out of the Chevalley-Eilenberg complex of the Lie 2-algebra
(see Example 3.2.17) and the de Rham complex of the manifold.

Proposition 1.0.7. (Proposition 5.3.2) There is a bijection

{moment maps for h⊕ g} ∼= {µ ∈ C2 : dtotµ = ω̃}.

Theorem 5.4.9 explicitly constructs a moment map for a given Lie 2-algebra
h ⊕ g, using primitives of a certain element ω3p in the Chevalley-Eilenberg
complex of h⊕ g and the map γ introduced in [7].

Theorem 1.0.8. (Thm. 5.4.9) Assume H1(M) = 0. Let η ∈ CE(L)2 satisfy
dCE(L)η = ω3p. Then

φη := γ ◦ f
is a moment map for h⊕ g, where f is constructed out of η as in Lemma 5.4.8,
and γ is given just below Proposition 5.4.3.

Moreover, Proposition 5.4.14 then shows that any other moment map for h⊕g is
equivalent (in the sense made precise in Definition 5.4.13) to the one constructed
using the theorem above.

Since the Chevalley-Eilenberg complex of a Lie 2-algebra h⊕ g is a relatively
unfamiliar and more complicated than that of a Lie algebra g, section §5.5.1
gives existence results in terms of Lie algebra cohomology, namely in terms of a
certain 3-cocycle cred in the Chevalley-Eilenberg complex of g with values in a
trivial representation induced by the ternary bracket of the Lie 2-algebra:

Proposition 1.0.9. (Prop. 5.5.5, Prop. 5.5.7) Assume [ω3p]g 6= 0.

i) If [cred]g = 0, then there exists no h⊕ g moment map.

ii) Assume H1(M) = 0. If H3(g) is one-dimensional and [cred]g 6= 0, then there
exists a h⊕ g moment map.
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Chapter 3

Finally, we briefly mention the preliminary results of sections §3.3.1.1 and
§3.4.2.1.

Let G be a Lie group, and g its Lie algebra. Then an orbit of arbitrary
ξ ∈ g∗ under the coadjoint action of G has a symplectic structure that plays an
important role in symplectic geometry and mathematical physics (see [35]). The
results of §3.3.1.1 and §3.4.2.1 present the beginnings of ongoing work (joint with
Marco Zambon), the aim of which is, in particular, to research generalizations
of coadjoint orbits and their potential applications to multisymplectic geometry.
In fact, the setting is more general: let ρ : g→ gl(h) be a representation of a
Lie algebra g, and let c be a 3-cocycle in the Lie algebra cohomology of g with
values in h. Consider the representation on h of the connected, simply connected
Lie group G integrating g, and the induced representation of G on h∗. Then,
if a certain condition holds, there exists a G-invariant 2-plectic (Proposition
3.3.11, Proposition 3.3.13) form on the orbit σξ of a point ξ ∈ h∗ defined by

ωξ(vx, vy, vz) := ξ(c(x, y, z)).

Let c = dgb for b ∈ ∧2g∗ ⊗ h a G-invariant 2-cochain in the Chevalley-Eilenberg
complex of g with values in h. Define a 2-form on σξ by βξ(vx, vy) := ξ(b(x, y)).
Then, assuming certain condition (3.20) holds, the action of g on the orbit σξ
of ξ ∈ h∗ admits a homotopy moment map:

Proposition 1.0.10. (Prop. 3.4.10) The G-action on (σξ, ω) admits an
equivariant homotopy moment map given by

f1 : g→ Ω1
Ham(σξ), x 7→ ιvxβ

f2 : ∧2g→ C∞(σξ), x ∧ y 7→ −ιvy ιvxβ

The case where h = ∧2g, and β = Id|∧2g corresponds to 2-plectic coadjoint
orbits.

The next step in this project would be to relax the requirements on the cocycle
c and see when the action admits a moment map.





Chapter 2

Symplectic geometry

This chapter will focus on symplectic geometry. The results of this chapter are
not original and are based on a number of well-known sources, including [8],
[23], [22], [62], [65], and [66].

§2.2 introduces the necessary background on Lie groups and Lie algebras: in
particular, Lie group and Lie algebra actions.

§2.3 gives an introduction to symplectic geometry.

§2.4 introduces symplectic moment maps, provides examples and investigates
the questions of existence and uniqueness.

2.1 Introduction

Symplectic geometry is the study of manifolds equipped with a closed non-
degenerate 2-form. According to [65], the first symplectic manifold was
introduced by Lagrange in 1808, in his study of the motion of planets. However,
the importance of a symplectic structure clearly emerged from Hamilton’s work
on classical mechanics and optics ([23]). Thus, symplectic geometry is the
mathematical framework of Hamiltonian mechanics.

In Hamiltonian mechanics, the phase space, i.e., the space of states, of a physical
system is a symplectic manifold, and time evolution of a dynamical system is a
one-parameter family of symplectomorphisms. Hamilton’s equations assign a
dynamical system to a function on the phase space that is called a Hamiltonian

9



10 SYMPLECTIC GEOMETRY

function and represents the energy of the system. The symplectic form assigns
an evolution vector field to the Hamiltonian.

We will illustrate this using the example of a particle of mass m moving in
Rn. Such a physical system is described by a set of position and momentum
coordinates (q1(t), ..., qn(t), p1(t), ..., pn(t)), where the momenta are given by
pi(t) = mq̇i(t). The set of all possible positions and momenta of the particle
constitute the phase space of the particle and is given by R2n.

Let the force acting on the particle be given by1 F = −∇U(q). The following
function on the phase space is called the Hamiltonian of the physical system
under consideration:

H(p, q) := |p|
2

2m + U(q).

The Hamilton’s equations are then given by

q̇i(t) = ∂H

∂pi
(q(t), p(t))

ṗi(t) = −∂H
∂qi

(q(t), p(t)).

If we consider the vector field vH := ( ∂H∂p1
, ..., ∂H∂pn ,−

∂H
∂q1

, ...,− ∂H
∂qn

), the
Hamilton’s equations can be rewritten as

(q̇(t), ṗ(t)) = vH(q(t), p(t)).

i.e., the system evolves along the vector field vH .

The symplectic structure ω is precisely what allows to associate such an evolution
vector field vf to an arbitrary function f on the phase space via

−ιvfω = df,

where ιv denotes contraction with vector field v.

E.g., the vector field vH := ( ∂H∂p1
, ..., ∂H∂pn ,−

∂H
∂q1

, ...,− ∂H
∂qn

) is the evolution vector
field associated to the Hamiltonian H(p, q) := |p|2

2m + U(q) using the canonical

symplectic structure of R2n : ω =
n∑
i=1

dqi ∧ dpi.

Non-degeneracy of the symplectic forms assures that this vector field is unique.
1Such forces are called conservative, and U(q) is called the potential.
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The other 2 properties of the symplectic form, i.e., skew-symmetry and
closedness, have the following physical interpretations ([28]):

• Skew-symmetry: The Hamiltonian of a physical system is interpreted
as its total energy. Total energy of the system is conserved during the
physical evolution, i.e.,

£vHH = dH(vH) = −ω(vH , vH) = 0.

• Closedness: dω = 0 forces ω to be preserved under the flow of vH , i.e.,
under the evolution of the system. Indeed,

£vHω = dιvHω + ιvHdω

= −ddH + ιvHdω

= ιvHdω

= 0.

Despite originating in Hamiltonian mechanics, symplectic geometry evolved into
a powerful technique in both physics and mathematics. In physics many complex
systems are studied using Hamiltonian techniques. Generalizing symplectic
geometry to infinite-dimensional manifolds allows to study classical field theory
2 ([22]).

In mathematics and mathematical physics symplectic geometry has been
instrumental in developments in algebraic geometry, partial differential
equations, representation theory ([65]) and geometric quantization ([66]).

2.2 Lie group and Lie algebra actions

Lie group and Lie algebra actions are central to the material of this thesis. This
section gives a brief introduction to Lie group and Lie algebra actions: §2.2.1
discusses Lie group actions and provides important examples of such; §2.2.2
does the same for Lie algebra actions. §2.2.3 introduces Lie algebra homology
and cohomology. Finally, §2.2.4 discusses Lie algebra extensions, which will be
important in the discussion of moment maps.

The material of this section is mostly based on the lecture notes "Introduction to
Lie groups" by Zuoqin Wang ([62]) and on "Introduction to smooth manifolds"

2We will say more about this in Section 3.
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by John M. Lee [40]. We will only consider finite-dimensional Lie groups and
Lie algebras.

2.2.1 Lie group actions

We first recall definitions of a Lie group and a Lie algebra:

Definition 2.2.1. ([62, Def. 1.1, Lec. 5]) A Lie group G is a smooth manifold
equipped with a group structure, such that the multiplication map

m : G×G→ G

(g1, g2) 7→ g1 · g2

is smooth.

Let G be a Lie group, and let Lg denote left multiplication by g ∈ G. Let TeG
be the tangent space to G at identity e ∈ G, and let xe ∈ TeG. Define a vector
field xg by

xg := (dLg)(xe),

where dLg is the derivative of Lg.

Definition 2.2.2. ([62, Def. 2.1, Lec. 5]) A vector field x ∈ X(G) on a Lie
group G is called left-invariant if

(dLg)(xh) = xgh.

Note that this is equivalent to Lg∗x = x, where the star denotes the pushforward.

It then follows from the chain rule that the vector field xg := (dLg)(xe) defined
above is left-invariant, i.e., any vector at TeG determines a left-invariant vector
field on G. Conversely, any left-invariant vector field is determined by its value
at the identity e ∈ G, i.e., the space of left-invariant vector fields on G can
be identified with TeG. In what follows, we will often identify a left-invariant
vector field x with its value at the identity.

We can now define the Lie algebra of a Lie group:

Definition 2.2.3. Let G be a Lie group. The Lie algebra g of G is the set of
left-invariant vector fields on G equipped with the Lie bracket of vector fields3.

3Note that it follows from the naturality of the Lie bracket of vector fields, that left-invariant
vector fields are closed under the Lie bracket, i.e., Lg∗[x, y] = [Lg∗x, Lg∗y] = [x, y].
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We also give the following general definition of a Lie algebra.

Definition 2.2.4. A Lie algebra g is a vector space together with a bilinear
skew-symmetric map [ , ] : g× g→ g satisfying the following Jacobi identity for
all x, y, x ∈ g:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Finally, we recall the following result and refer the reader to [40] for the proof.

Proposition 2.2.5. [40, Thm. 8.44, Thm. 20.19] Let G and H be Lie groups,
and let g and h be their respective Lie algebras. Then, if φ : G → H is a Lie
group homomorphism, then deφ : g→ h is a Lie algebra homomorphism.

Conversely, suppose G and H are Lie groups, where G is simply connected,
and let g and h be their corresponding Lie algebras. Let ψ : g → h be a Lie
algebra homomorphism. Then there exists a unique Lie group homomorphism
Ψ : G→ H such that deΨ = ψ.

We can now define Lie group actions on manifolds:

Definition 2.2.6. Let G be a Lie group, and M a manifold. A homomorphism
of groups

ψ : G→ Diff(M)

g 7→ ψg

is called an action of G on M .

The action is smooth if the following map, called the evaluation map, is smooth:

evψ : G×M →M

(g,m) 7→ ψg(m).

We will often denote ψg(m) by g ·m or gm for the sake of convenience.

When G acts linearly on a vector space, we have the following:

Definition 2.2.7. Let G be a Lie group, and V a (finite-dimensional) vector
space. A homomorphism of Lie groups

ψ : G→ GL(V )

is called a representation of G on V .
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We will also call the vector space V a representation of G.

Example 2.2.8. Any Lie group G acts on itself by left multiplication: ψg(h) :=
g ∗ h, where g, h ∈ G and ∗ denotes the group operation.

Example 2.2.9. Any Lie group G acts on itself by conjugation: ψg(h) :=
g ∗ h ∗ g−1, where g, h ∈ G and ∗ denotes the group operation.

Example 2.2.10. Let G be a Lie group, and g its Lie algebra. Denote by
cg the conjugation by element g ∈ G, i.e., cg(h) := ghg−1 for any h ∈ G.
For each g ∈ G, denote by Adg the derivative of cg at the identity element:
Adg = decg : TeG → TeG. Since each cg is a Lie group homomorphism, each
Adg is a Lie algebra homomorphism. Furthermore, since the map g 7→ cg is a
homomorphism, we get

Adgh = decgh = de(cg ◦ ch) = dch(e)cg ◦ dech = decg ◦ dech = Adg ◦Adh,

i.e., the map

Ad : G→ Aut(g) = GL(g)

g 7→ Adg

gives an action of G on g called the adjoint action or the adjoint representation
of G.

Example 2.2.11. Let G be a Lie group, g its Lie algebra, and g∗ the dual of
g. The coadjoint action Ad∗ of G on g∗ is given by

〈Ad∗gξ, x〉 = 〈ξ, Adg−1(x)〉,

for ξ ∈ g∗ and x ∈ g. We have

〈Ad∗ghξ, x〉 = 〈ξ, Ad(gh)−1x〉

= 〈ξ, Adh−1g−1x〉

= 〈ξ, Adh−1Adg−1x〉

= 〈Ad∗gAd∗hξ, x〉,

i.e., Ad∗ indeed defines an action.

Before proceeding further, we recall the following facts from the theory of Lie
groups:
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Proposition 2.2.12. (Derivative of Ad) Let G be a Lie group, and let g be
its Lie algebra. Let Ad : G→ GL(g) be the adjoint representation of G. Then
deAd = ad is a Lie algebra representation

ad : g→ gl(g)

x 7→ [x, ]

Proof. See the proof of [40, Theorem 20.27, §20].

Definition 2.2.13. [62, Def. 2.1, Lec. 6] Let G be a Lie group, and g its Lie
algebra. The exponential map of G is defined as

exp : g→ G, exp(x) = γ(1),

for any x ∈ g, where γ is the integral curve of the left-invariant vector field x
starting at identity e ∈ G.

Proposition 2.2.14. (Naturality of the exponential map) Let G and H
be Lie groups with Lie algebras g and h. Let φ : G → H be a Lie group
homomorphism. Then the following diagram commutes:

g h

G H

deφ

exp exp

φ

Proof. See the proof of [40, Theorem 20.8, §20].

We now proceed to define:

Definition 2.2.15. Let G be a Lie group acting on a manifold M , and let g
be the Lie algebra of G. For any x ∈ g, the vector field vx defined at m ∈M by

vx|m := d

dt

∣∣∣∣
t=0

(exp(−tx)m)

is called the fundamental vector field associated to x ∈ g.
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Example 2.2.16. Let G act on g by the adjoint action. At any y ∈ g, the
fundamental vector field associated to x ∈ g is given by:

vx|y = d

dt

∣∣∣∣
t=0

Adexp(−tx)y

= d

dt

∣∣∣∣
t=0

exp(−tadxy)

= d

dt

∣∣∣∣
t=0

exp(−t[x, y])

= −[x, y].

Example 2.2.17. Let G act on g∗ by coadjoint action. At any ξ ∈ g, the
fundamental vector field associated to x ∈ g is given by

〈vx|ξ, y〉 = d

dt

∣∣∣∣
t=0
〈Ad∗exp(−tx)ξ, y〉 = d

dt

∣∣∣∣
t=0
〈ξ, Adexp(tx)y〉 = 〈ξ, [x, y]〉.

The next useful proposition relates the fundamental vector field of x ∈ g to that
of Adgx ∈ g for g ∈ G.

Proposition 2.2.18. Let ψ : G→ Diff(M) be a smooth action. Then for any
g ∈ G and x ∈ g

vAdgx|m = ψg∗(vx|g−1m)

Proof. Indeed,

vAdgx|m = d

dt

∣∣∣∣
t=0

exp(−tAdgx)m

= d

dt

∣∣∣∣
t=0

exp(Adg(−tx))m

= d

dt

∣∣∣∣
t=0

(gexp(−tx)g−1)m

= ψg∗|g−1m
d

dt

∣∣∣∣
t=0

exp(−tx)(g−1m)

= ψg∗(vx|g−1m),

where in the third equality we used the naturality of the exponential map
(Proposition 2.2.14), and in the fourth equality we used the chain rule.
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Proposition 2.2.19. The map v_ : g → X(M), x 7→ vx is a Lie algebra
homomorphism

Proof. Fix m ∈M , and consider the map φm : G→M given by φm(g) = gm.
This map is smooth, and the negative of its differential at g = e evaluated at
x ∈ g is given by

(−deφm)(x) = (deφm)(−x)

= d

dt

∣∣∣∣
t=0

(exp(t(−x))m)

= vx|m.

If hence follows that the map x 7→ vx is linear.

To see that it is a Lie algebra homomorphism, note that, by the previous
proposition, vAdexp(−ty)x|m = ψ(exp(−ty))∗(vx|(exp(ty))m). Differentiating both
sides of this identity, we get

d

dt

∣∣∣∣
t=0

vAdexp(−ty)x|m = d

dt

∣∣∣∣
t=0

ψ(exp(−ty))∗(vx|(exp(ty))m)⇔

d

dt

∣∣∣∣
t=0

vExp(ad(−ty)x)|m = d

dt

∣∣∣∣
t=0

ψ(exp(−ty))∗(vx|(exp(ty))m)⇔

v[x,y]|m = £−vyvx = [−vy, vx]|m⇔

v[x,y]|m = [vx, vy]|m,

where we have denoted by Exp : gl(g)→ GL(g) the exponential map of GL(g).
On the left-hand side of the second identity we used the naturality of the
exponential map applied to the Lie group homomorphism Ad : G→ GL(g), on
the left-hand side of the third identity we used the linearity of vx, and finally
on the right-hand side of the third identity we used the definition of the Lie
derivative of vector fields and the fact that {exp(ty)}t∈R is the flow of −vy.

We also define fundamental vector fields corresponding to elements of ∧kg. This
definition will be useful in the next chapters:

Definition 2.2.20. Let G be a Lie group acting on a manifold M , and let
g be the Lie algebra of G. Let p = x1 ∧ x2 ∧ · · · ∧ xk ∈ ∧kg, and let vxi be
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the fundamental vector field corresponding to xi ∈ g for each 1 ≤ i ≤ k. The
multivector field vp ∈ Γ(ΛkTM) given by

vp := vx1 ∧ vx2 ∧ · · · ∧ vxk

is the called the fundamental multivector field corresponding to p.

The notion is extended linearly to all p ∈ ∧kg.

Next we will introduce the concepts of orbits and stabilizers of a given Lie group
action.

Definition 2.2.21. Let ψ : G→ Diff(M) be a smooth action. The set

G ·m := {g ·m | g ∈ G}

is called the orbit of G through m ∈M .

Proposition 2.2.22. Let ψ : G→ Diff(M) be a smooth action, m ∈M . The
orbit G ·m is an immersed submanifold of M.

Proof. See the proof of Proposition 3.2 (1) in [62, Lecture 13-14].

Definition 2.2.23. Let ψ : G→ Diff(M) be a smooth action. The set

Gm := {g ∈ G | g ·m = m}

is called the stabilizer of m ∈ G.

Proposition 2.2.24. (Proposition 3.2 (2) in [62, Lecture 13-14]) Let ψ : G→
Diff(M) be a smooth action. The stabilizer Gm is a Lie subgroup of G, with Lie
algebra

gm := {x ∈ g | vx|m = 0}

Proof. First of all note that it follows from the definition that the stabilizer Gm
is a subgroup of G. Next, note that Gm is the preimage of the point m ∈ M
under the map evψ|m : G → M, g 7→ g ·m. Since the action is smooth, this
map is smooth, and a preimage of a point is a closed set. Thus, by the closed
subgroup theorem, Gm is a Lie subgroup of G. The Lie algebra of Gm is then,
by definition,

gm : = {x ∈ g | exp(tx) ∈ Gm}

= {x ∈ g | exp(tx) ·m = m}
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By differentiating at t = 0, we get gm ⊂ {x ∈ g | vx|m = 0}. Conversely,
suppose vx|m = 0. Then c(t) ≡ m, t ∈ R is an integral curve of the vector field
vx through m ∈ M . Thus, exp(tx) ·m = c(t) = m, i.e., exp(tx) ∈ Gm for all
t ∈ R, and x ∈ gm.

Definition 2.2.25 (Cotangent lift). Let G be a Lie group acting on manifold
M . Then there is an action ψ : G → Diff(T ∗M) of G on T ∗M defined in a
following way:

ψg : T ∗mM → T ∗gmM

α 7→ ψg(α),

where ψg(α) is defined by

〈ψg(α), v〉 = 〈α,ψg−1∗v〉,

for v ∈ TgmM .

This action is called the cotangent lift of the action of G on M .

Definition 2.2.26. Let G be a Lie group acting on manifolds M and N . A
smooth map f : M → N satisfying for all g ∈ G and m ∈M

f(g ·m) = g · f(m)

is called equivariant with respect to the action of G or G-equivariant.

Example 2.2.27. The vector bundle projection π : T ∗M →M isG-equivariant,
where the action on T ∗M is the one from Definition 2.2.25.

2.2.2 Lie algebra actions

Definition 2.2.28. Let g be a Lie algebra, and M a manifold. A
homomorphism of Lie algebras

ρ : g→ X(M)

x 7→ ρx

is called an action of g on M .
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The action is smooth if the following map is smooth:

evρ : g×M → TM

(x,m) 7→ ρx(m)

A closely related notion is that of a Lie algebra representation on a vector space:
Definition 2.2.29. Let g be a Lie algebra, and V a vector space. Let gl(V ) be
the space of endomorphisms of V , i.e., linear maps from V to itself, equipped
with the commutator bracket. A homomorphism of Lie algebras

ρ : g→ gl(V )

is called a representation of g on V .

We will also call the vector space V a representation of g.
Example 2.2.30. The adjoint action or the adjoint representation of the Lie
algebra g on itself is given by

ad : g→ End(g) = gl(g)

x 7→ adx,

where adx(y) = [x, y].

This representation induces a representation on ∧kg by the following formula:

adx(x1∧...∧xk) = [x, x1]∧x2∧...∧xk+x1∧[x, x2]∧...∧xk+···x1∧x2∧...∧[x, xk].

Example 2.2.31. The coadjoint representation ad∗ of g on g∗ is given by

〈ad∗xξ, y〉 = 〈ξ, ad−xy〉 = −〈ξ, [x, y]〉

The following proposition follows from 2.2.19.
Proposition 2.2.32. Let G be a Lie group acting on manifold M , and let g
be its Lie algebra. Then the following map defines an action of g on M .

ρ : g→ X(M)

x 7→ ρx,

where
ρx(m) := d

dt

∣∣∣∣
t=0

(exp(−tX)m).

This action is called the infinitesimal action of g on M .
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One can "integrate" the infinitesimal action of g to obtain a Lie group action
near the identity e ∈ G. Thus, for connected Lie groups we have:

Proposition 2.2.33. (Proposition 2.4 in [62, Lecture 13-14]) An action of
a connected Lie group G on a manifold M is uniquely determined by the
infinitesimal action of g.

Moreover, the following theorem due to R. Palais holds:

Theorem 2.2.34. (R. Palais, [48]) Let G be a connected simply-connected Lie
group, let ρ : g→ X(M) be a Lie algebra action such that the vector field ρ(x)
is complete for all x ∈ g. Then there exists a unique action ψ : G→ Diff(M)
such that the infinitesimal action associated to ψ as in Proposition 2.2.32 is ρ.

Proof. [48] or [62, Thm 2.5, Lecture 13-14].

2.2.3 Lie algebra homology and cohomology.

This subsection focuses on Lie algebra homology and cohomology, which will be
indispensable throughout this thesis. Lie algebra cohomology was introduced
by E. Cartan to study topological properties of compact Lie groups using its
Lie algebra ([11]), and since its introduction has proved useful in many areas of
mathematics and physics (see, e.g., [12]).

Definition 2.2.35. Let g be a Lie algebra. The map δk : Λkg→ Λk−1g defined
by

δk : x1 ∧ ... ∧ xk 7→
∑

1≤i<j≤k
(−1)i+j [xi, xj ] ∧ x1 ∧ ...x̂i ∧ ... ∧ x̂j ∧ ...xk, (2.1)

where k ≥ 1 and xi ∈ g, is called k-th Lie algebra homology differential of g.

We recall the following definition from [42]:

Definition 2.2.36. The kernel of δk is called the k-th Lie kernel of g.

We will denote the k-th Lie kernel of g by Pk,g := kerδk and the direct sum
of all the Lie kernels by Pg :=

⊕dimg
k=0 Pk,g. We will also be interested in the

subspace P≥1,g :=
⊕dimg

k=1 Pk,g.

We state the following useful lemma from [55] without proof.
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Lemma 2.2.37. ([55, Lemma 3.12]) Let g be a Lie algebra, and let p ∈
∧kg, q ∈ ∧lg. Then

δk+l(p ∧ q) = δk(p) ∧ q + (−1)kp ∧ δl(q) + (−1)k[p, q], (2.2)

where [x1 ∧ ...∧xk, y1 ∧ ...∧ yl] =
∑

(−1)i+j [xi, yj ]∧x1 ∧ ...∧ x̂i ∧ ...∧xk ∧ y1 ∧
... ∧ ŷj ∧ ... ∧ yl.

Proof. See the proof of [55, Lemma 3.12].

The following important result follows from the above lemma:

Corollary 2.2.38. The Lie algebra homology differential differential commutes
with the adjoint action, i.e.,

δl(adxq) = adxδl(q)

for any x ∈ g, q ∈ ∧lg.

Proof. By (2.2), we have δl+1(x ∧ q) = −x ∧ δl(q)− adxq, since δ1 = 0. Then

δl(adxq) = −δl(δl+1(x ∧ q))− δl(x ∧ δlq)

= −δl(x ∧ δlq)

= x ∧ δl−1δl(q) + adxδl(q)

= adxδl(q),

where in the third equality we used the formula (2.2) again.

Let g be a Lie algebra, and M a representation of g. Consider the space of
linear maps ∧kg→M :

Ck(g;M) := Hom(∧kg,M) ∼= ∧kg∗ ⊗M.

Elements of Ck(g;M) are called k-forms on g with values in M , or k-cochains
from g to M . We define a graded differential complex

...
dg−→ Ck−1(g,M) dg−→ Ck(g;M) dg−→ Ck+1(g,M) dg−→ ...
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with the differential on η ∈ Ck(g;M) given by

(dgη)(x1, ..., xk+1) =
k+1∑
i=1

(−1)i+1xi · η(x1, ..., x̂i, ..., xk+1)

+
∑
i<j

(−1)i+jη([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xk+1),

where the dot denotes the representation, and x̂i denotes omission of that
element. The fact that dg squares to zero is due to the Jacobi identity and M
being a representation of g.

This complex is called the Chevalley-Eilenberg complex ([64, §7.7]) of g with
values in M , and its cohomology

Hk(g;M) = ker dg : Ck(g;M)→ Ck+1(g;M)
imdg : Ck−1(g;M)→ Ck(g;M)

is called the Lie algebra cohomology of g with values in M .

For k = 0 we have

H0(g;M) = {m ∈M : x ·m = 0 ∀x ∈ g},

i.e., the zeroth Lie algebra cohomology of g with values in M is the space of
invariants of M under the action of g.

2.2.3.1 The case of a trivial module

In the case where M = R, and the action of g is trivial, we get

(dgη)(x1, ..., xk+1) =
∑
i<j

(−1)i+jη([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xk+1),

for η ∈ Ck(g,R) = ∧kg∗. The dg defined this way is the dual of δk introduced
in (2.1)

The differential dg has all the information about the Lie bracket of g, since
dg : g∗ → ∧2g∗ is the dual of δ2(x, y) = −[x, y], and d2

g = 0 is equivalent to the
Jacobi identity.

Consider the commutator ideal [g, g] of g defined by:

[g, g] := {linear combinations of [x, y], ∀x, y ∈ g}
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Then, for c ∈ C1(g,R) = g∗, dgc = 0 ⇐⇒ c([g, g]) = 0, and therefore

H1(g,R) = [g, g]0,

where [g, g]0 ⊂ g∗ is the annihilator of [g, g].

2.2.4 Lie algebra extensions

Let g be a Lie algebra.

Definition 2.2.39. Lie algebra ḡ is called an extension of g by a, if there exists
a short exact sequence of Lie algebras

0→ a→ ḡ→ g→ 0.

This extension is called central if a is in the center of ḡ, i.e., [ḡ, a]ḡ = 0.

Central extensions by R are equivalently characterized by 2-cocycles c ∈ ∧2g∗

in the Lie algebra cohomology of g with values in R. Then, ḡ = g⊕ R and

[(x1, r1), (x2, r2)]ḡ = ([x1, x2]g, c(x1, x2)).

This bracket satisfies the Jacobi identity because c is a cocycle.

Example 2.2.40. Let h be the Heisenberg algebra spanned by

x =

0 1 0
0 0 0
0 0 0

 , y =

0 0 0
0 0 1
0 0 0

 , z =

0 0 1
0 0 0
0 0 0


with the commutator relations [x, y] = z, [x, z] = 0, [y, z] = 0. The Heisenberg
algebra h can be seen as the central extension of the abelian Lie algebra R2 by
R with the corresponding cocycle given by4 c(q, p) = 1, c(q, q) = 0, c(p, p) = 0,
where p, q ∈ R2 are the basis of R2.

Indeed, identifying x ∼ (q, 0), y ∼ (p, 0), z ∼ (0, 1), we get

[x, y]h = [(q, 0), (p, 0)]h = ([q, p]R2 , c(q, p)) = (0, 1) = z

and
[x, z]h = [(q, 0), (0, 1)]h = (0, 0)

[y, z]h = [(p, 0), (0, 1)]h = (0, 0).
4We will later see that this is the canonical symplectic form on R2.
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2.3 Symplectic manifolds

In this section we will introduce symplectic manifolds and provide relevant
definitions and examples. The material of this section is mostly based on [8].

2.3.1 Definition and examples.

Definition 2.3.1. A manifold M equipped with a 2-form ω such that

1. dω = 0

2. at every point m ∈M , ωm is nondegenerate, i.e., if v ∈ TmM is such that
ωm(v, u) = 0 ∀u ∈ TmM , then v = 0

is called a symplectic manifold. The form ω is called a symplectic form.

Remark 2.3.2. It follows from the nondegeneracy condition that symplectic
manifolds are always even-dimensional.

Example 2.3.3. Any orientable 2-dimensional manifold equipped with an area
form.

Example 2.3.4. The manifold M = R2n with coordinates q1, ..., qn, p1, ..., pn

equipped with a 2-form given by ω :=
n∑
i=1

dqi ∧ dpi is a symplectic manifold.

The following theorem by G. Darboux establishes that locally any symplectic
manifold is (R2n,

n∑
i=1

dqi ∧ dpi):

Theorem 2.3.5. ([8])(G.Darboux) Let (M,ω) be a symplectic manifold. Then
for any p ∈M , there exists a coordinate system (U, q1, ..., qn, p1, ..., pn) centered
at p ∈ U ⊂M such that on U

ω =
n∑
i=1

dqi ∧ dpi.

Proof. See the proof of Theorem 8.1 in [8].

Example 2.3.6. Phase space. The following example generalizes the previous
example in the case of Q = Rn.
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Consider the cotangent bundle T ∗Q of a manifold Q, with the projection map

π : T ∗Q→ Q.

There is a canonical 1-form θ on T ∗Q called the tautological 1-form and defined
by

θη(v) := η(π∗v),

for η ∈ T ∗Q and v ∈ TηT ∗Q. Then ω := −dθ is the canonical symplectic form on
T ∗Q. Indeed, it is obvious that this form is closed. To see the non-degeneracy,
we will write down ω in coordinates. Let q = (q1, ..., qn) be local coordinates on
Q, and p = (p1, ..., pn) the corresponding coordinates on the fibers. Then

θ = pidqi,

and
ω = −

n∑
i=1

dpi ∧ dqi =
n∑
i=1

dqi ∧ dpi.

It is clear that this form is non-degenerate, and hence (T ∗Q,ω) is a symplectic
manifold.

Example 2.3.7. Coadjoint orbits. Let G be a a Lie group, g its Lie algebra,
ξ ∈ g∗, and σξ an orbit of ξ under the coadjoint action of G on g∗. For any
ξ ∈ g∗, define a skew-symmetric bilinear form on g by bξ(x, y) = 〈ξ, [x, y]〉.
Recall from Example 2.2.17 that 〈ξ, [x, y]〉 = 〈vx|ξ, y〉, i.e., bξ(x, y) = 0 for
all y ∈ g if and only if vx|ξ = 0, where vx is the fundamental vector field
corresponding to x ∈ g. Thus, ker(bξ) = gξ, where gξ denotes the Lie algebra of
the stabilizer Gξ of ξ ∈ g under the coadjoint action of G. Therefore, b induces
a well-defined non-degenerate form on the orbit σξ of ξ:

ωξ(vx, vy) = 〈ξ, [x, y]〉 (2.3)

To show that this form is symplectic, we need to show dω = 0. Indeed,

dω(vx, vy, vz) = vx · ω(vy, vz)− vy · ω(vx, vz) + vz · ω(vx, vy)

− ω([vx, vy], vz) + ω([vx, vz], vy)− ω([vy, vz], vx).

Evaluating at ξ,

dω(vx, vy, vz)|ξ = vx · 〈ξ, [y, z]〉 − vy · 〈ξ, [x, z]〉+ vz · 〈ξ, [x, y]〉

− 〈ξ, [[x, y], z]〉+ 〈ξ, [[x, z], y]〉 − 〈ξ, [[y, z], x]〉.

By Example 2.2.17, this becomes
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dω(vx, vy, vz)|ξ = 〈ξ, [x, [y, z]]〉 − 〈ξ, [y, [x, z]]〉+ 〈ξ, [z, [x, y]]〉

− 〈ξ, [[x, y], z]〉+ 〈ξ, [[x, z], y]〉 − 〈ξ, [[y, z], x]〉

= 2(〈ξ, [x, [y, z]]〉 − 〈ξ, [y, [x, z]]〉+ 〈ξ, [z, [x, y]]〉)

= 0,

by Jacobi identity.

Therefore, (σξ, ω) is a symplectic manifold.

2.3.2 Symplectic and Hamiltonian vector fields

Definition 2.3.8. A vector field v ∈ X(M) on a symplectic manifold (M,ω) is
a symplectic vector field if

£vω = 0.

We will denote the set of symplectic vector fields by XSympl(M)

Definition 2.3.9. ([8, Def. 1.7]) Let (M,ω) and (M ′, ω′) be two symplectic
manifolds, and let φ : M → M ′ be a diffeomorphism. Then φ is a
symplectomorphism if φ∗ω′ = ω.

It is then clear from this definition and the definition of the Lie derivative, that
symplectic vector fields are infinitesimal counterparts of symplectomorphisms
from a symplectic manifold to itself.

Lemma 2.3.10. Let (M,ω) be a symplectic manifold. A vector field v ∈ X(M)
is a symplectic vector field iff ιvω is closed.

Proof. By Cartan’s magic formula,

£vω = ιvdω + dιvω.

The statement follows from dω = 0.

Definition 2.3.11. A vector field vf ∈ X(M) on a symplectic manifold (M,ω)
is the Hamiltonian vector field corresponding to f ∈ C∞(M) if

df = −ιvfω,

where ιvf denotes contraction with the vector field vf .
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Remark 2.3.12. Note that, due to the non-degeneracy of ω, the corresponding
Hamiltonian vector field is unique for each f ∈ C∞(M).

We will denote the set of Hamiltonian vector fields by XHam(M).

Note that v ∈ X(M) is a Hamiltonian vector field iff ivω is exact. Therefore,
all Hamiltonian vector fields are also symplectic, i.e., XHam(M) ⊂ XSympl(M).

Moreover, since restrictions of the map

ω̄ : X(M)→ Ω1(M)

v 7→ ιvω

provide isomorphisms ω̄|XSympl(M) : XSympl(M)→ Ω1
closed(M) and ω̄|XHam(M) :

XHam(M) → Ω1
exact(M), we obtain the following exact sequence of vector

spaces:
0→ XHam(M)→ XSympl(M)→ H1(M)→ 0, (2.4)

where H1(M) is the first de Rham cohomology group5 of M .

In particular,

Proposition 2.3.13. If H1(M) = 0, then every symplectic vector field on M
is Hamiltonian.

Example 2.3.14. ([8, §18.1]) Consider S2 with the cylindrical coordinates
(θ, h). Then ω = dθ ∧ dh is a symplectic structure on S2, and the vector field
− ∂
∂θ is a Hamiltonian vector field corresponding to the height function h.

Lemma 2.3.15. The Lie bracket of symplectic vector fields is Hamiltonian,
i.e.,

[XSympl,XSympl] ⊂ XHam(M).

Proof. Let v, u ∈ XSympl be symplectic vector fields. Then, by Cartan calculus

ι[v,u]ω = £vιuω − ιu£vω

= dιvιuω + ιvdιuω

= dιvιuω,

where in the last equality we used that ιuω is closed, since u ∈ XSympl(M).
Thus, we get that ι[v,u]ω is exact, and therefore [v, u] ∈ XHam(M).

5For example, if M is compact, this group is finite-dimensional.
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Corollary 2.3.16. XHam(M) is a Lie algebra ideal of XSympl(M).

In particular, if H1(M) is endowed with the trivial Lie bracket, then the exact
sequence (2.4) is an exact sequence of Lie algebras.

2.3.3 The Lie algebra of observables

Definition 2.3.17. Let (M,ω) be a symplectic manifold. The Poisson bracket
of f, g ∈ C∞(M) is defined by

{f, g} := ω(vf , vg),

where vf , vg are the Hamiltonian vector fields corresponding to f, g respectively.

Note that it follows immediately from the definition that the Poisson bracket is
bilinear and antisymmetric:

{f, g} = ω(vf , vg) = −ω(vg, vf ) = −{g, f}.

Lemma 2.3.18. Let f, g ∈ C∞(M) and vf , vg be the respective Hamiltonian
vector fields. Then

{f, g} = £vf g = −£vgf

Proof. Indeed,

ω(vf , vg) = −ω(vg, vf )

= −ιvf ιvgω

= ιvf dg

= £vf g

The equality {f, g} = −£vgf now follows from the antisymmetry of the Poisson
bracket.

Corollary 2.3.19. Poisson bracket of any f ∈ C∞(M) with a constant
vanishes, i.e.,

{f, c} = 0
for any c = const, f ∈ C∞(M).

Proof. This follows both from the previous lemma and from the definition of the
Poisson bracket, since the Hamiltonian vector field corresponding to a constant
function is 0.
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Proposition 2.3.20. (C∞(M), { , }), i.e., the set of smooth functions on a
symplectic manifold equipped with the Poisson bracket, is a Lie algebra.

Proof. Since the bilinearity and the antisymmetry are obvious, the only thing
left to prove is that the Jacobi identity is satisfied, i.e., that

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0.

Let’s denote the left-hand side of the above equality by J , i.e.,

J := {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}}.

It suffices to show that
2J = dω(vf , vg, vh),

where vf , vg, vh are the Hamiltonian vector fields of f, g, h respectively. Then
J = 0 will follow from the fact that dω = 0. Indeed,

dω = vf · ω(vg, vh)− vg · ω(vf , vh) + vh · ω(vf , vg)

− ω([vf , vg], vh) + ω([vf , vh], vg)− ω([vg, vh], vf ).

It then follows from Lemma 2.3.18 that

dω = {f, {g, h}} − {g, {f, h}}+ {h, {f, g}} (2.5)

− ω([vf , vg], vh) + ω([vf , vh], vg)− ω([vg, vh], vf )

= J − ω([vf , vg], vh) + ω([vf , vh], vg)− ω([vg, vh], vf ).

Using Cartan calculus, invariance of ω, and the definition of Hamiltonian vector
fields, we get

ι[vf ,vg]ω = £vf ιvgω − ιvg£vfω

= £vf ιvgω

= dιvf ιvgω + ιvf dιvgω

= dιvf ιvgω − ιvf ddg

= dιvf ιvgω

= d{g, f}.

Thus,
ω([vf , vg], vh) = ιvhd{g, f} = £vh{g, f} = {h, {g, f}},
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and equation (2.5) becomes

dω = J − ω([vf , vg], vh) + ω([vf , vh], vg)− ω([vg, vh], vf )

= J − {h, {g, f}}+ {g, {h, f}} − {f, {h, g}}

= 2J.

Definition 2.3.21. The Lie algebra (C∞(M), { , }) is called the Lie algebra
of observables.6

Proposition 2.3.22. If vf , vg are Hamiltonian vector fields corresponding
respectively to f, g ∈ C∞(M), then [vf , vg] is the Hamiltonian vector field
corresponding to {f, g}. In particular, the map f 7→ vf , assigning Hamiltonian
vector fields to smooth functions on M , is a Lie algebra morphism.

Proof. By Cartan calculus,

ι[vf ,vg]ω = £vf ιvgω − ιvg£vfω

= dιvf ιvgω + ιvf dιvgω

= dιvf ιvgω

= −d{f, g}.

2.4 Moment maps in symplectic geometry

2.4.1 History and motivation

The notion of moment map is extremely important in symplectic geometry. It
is instrumental in formulating a Hamiltonian version of the celebrated Noether
theorem, plays an essential role in construction of symplectic quotients, and in
the characterization of torus actions on symplectic manifolds. The name comes
from the fact that moment maps generalize the classical notions of linear and
angular momentum, as will be demonstrated in the examples below.

6The name comes from physics, where an observable is a quantity that can be measured
in principle. In particular, in classical mechanics observables are smooth functions on the
phase space of a system, which is a symplectic manifold.
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Moment maps had appeared in classical mechanics before they were defined
in general by Kostant and Souriau in the late 60’s ([25]). They generalize to
arbitrary Lie groups the classical notions of total linear or angular momentum
([23]) and "enable one to relate the geometry of a symplectic manifold with
symmetry to the structure of its symmetry group" [66].

Moment maps have numerous applications in mathematics and physics. One
of the most fundamental applications of moment maps is the assignment of
conserved quantities to symmetries of a physical system in accordance with
Noether’s first theorem (see, e.g., [8, §24]; an excellent source on the Lagrangian
formulation and the history and influence of Noether’s theorems is [38]):

Theorem 2.4.1. (E. Noether) Consider the physical system given by (M,ω,H),
where (M,ω) is a symplectic manifold, and H ∈ C∞(M) is the Hamiltonian.
Let G be a connected Lie group acting on (M,ω), and let µ : M → g∗ be a
moment map for this action. Then H is G-invariant if and only if µ is constant
along the flow of vH .

This is directly related to another important application of the moment map -
the "symplectic reduction", i.e., the process of reducing the number of variables
describing the physical system by exploiting symmetries and conserved quantities
(see [8], [45], [47]):

Theorem 2.4.2. (J. Marsden - A. Weinstein, K. Meyer) Let G be a Lie group
acting on a symplectic manifold (M,ω), and let µ : M → g∗ be a moment map
for this action. Assume that G acts freely and properly 7 on µ−1(0), and let
i : µ−1(0)→M be the inclusion map. Then

• the orbit space Mred := µ−1(0)/G is a manifold

• π : µ−1 →Mred is a principal G-bundle

• there is a unique symplectic form ωred on Mred, such that i∗ω = π∗ωred.

Moment maps also play an important role in the classification of symplectic toric
manifolds, i.e., compact connected symplectic manifolds (M,ω) of dimension
2n equipped with effective actions of a torus Tn together with moment maps
µ : M → Lie(Tn) = Rn. Before stating the classification result, we need the
following definition, taken almost verbatim from [8, §28].

Definition 2.4.3. A Delzant polytope in Rn is a convex polytope that

• is simple, i.e., there are n edges meeting at each vertex
7It can be shown that 0 is a regular value of the moment map.
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• is rational, i.e., all edges meeting at the vertex p are of the form p+ tui,
for t ≥ 0, ui ∈ Zn

• is smooth, i.e., for each vertex, the corresponding ui can be chosen to be
a Z-basis of Zn.

We can now state the theorem: ([8, §28], [15]):

Theorem 2.4.4. There is a one-to-one correspondence between symplectic toric
manifolds (M,ω) with moment maps µ : M → Rn and Delzant polytopes:

{toric manifolds} → {Delzant polytopes}

(M,ω) 7→ µ(M)

As the final example of well-known applications of moment maps we will briefly
mention the "orbit method" by A. Kirillov: It says that a symplectic manifold
equipped with a transitive action of a Lie group G that admits a moment map
corresponds to an irreducible unitary representation of G. Moreover, every
such symplectic manifold corresponds to a coadjoint orbit of G on g∗. Thus,
irreducible representations of Lie groups correspond to coadjoint orbits of these
groups. In particular, for simply connected nilpotent Lie groups this method
allows to explicitly construct a bijection between coadjoint orbits and irreducible
unitary representations (see [35] and [61] for a short summary).

We end this introduction by mentioning the link between moment maps and
equivariant de Rham cohomology. Namely, let G be a compact Lie group acting
on a manifold M . Consider the space

CG(M) := (S(g∗)⊗ Ω(M))G,

i.e., the G-invariant elements of S(g∗)⊗ Ω(M), where S(g∗) is the symmetric
algebra on g∗. The Lie group G acts by coadjoint representation on S(g∗), and
by pull-back on Ω(M) : g · ω := (g−1)∗ω. Note that S(g∗)⊗ Ω(M) is a graded
vector space, where elements of g∗ are considered to have degree 2, and the
degree of η ∈ Ωk(M) is k, i.e., the usual degree of differential forms.

Consider a degree 2-element (η + f) ∈ (S(g∗) ⊗ Ω(M))G, where η ∈ Ω2(M),
and f ∈ g∗ ⊗ C∞(M). We can define the equivariant differential dG on such
elements by

dG(η + f)(x) := dη + ιvxη + d(f(x)),
where vx ∈ X(M) is the fundamental vector field corresponding to x ∈ g.

Now consider a compact connected Lie group G acting on a symplectic manifold
(M,ω) by preserving ω, and an element µ∗ ∈ (g ⊗ C∞(M))G, which can
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be seen as an equivariant map g → C∞(M). Consider a degree 2-element
(ω + µ∗) ∈ (S(g∗)⊗ Ω(M))G. Then

dG(ω + µ∗)(x) = dω + ιvxω + d(µ∗(x))

= ιvxω + d(µ∗(x)).

Thus, dG(ω + µ∗) = 0 if and only ιvxω + d(µ∗(x)) = 0, i.e., µ∗ is a comoment
map, and µ : M → g∗, µ(m)(y) = µ∗(y)(m) for all y ∈ g, is a moment map.

For a thorough treatment of this topic see [1] and [19].

2.4.2 Definition and examples

It is common in mathematics to consider symmetries of various structures,
i.e., Lie group actions that preserve the given structure. It is thus natural
to consider actions of Lie groups on symplectic manifolds that preserve the
symplectic structure. Then Lemma 2.3.10 tells us that, for fundamental vector
fields vx of the action corresponding to x ∈ g, the 1-form ιvxω will be closed.
We can take a step further and require these forms to be exact, and thus the
fundamental generators of the action to be Hamiltonian: by (2.4), the quotient
XSympl(M)/XHam(M) = H1(M), which is often finite-dimensional, e.g., for
compact manifolds. This leads to the following definition:

Definition 2.4.5. Let G be a Lie group acting on a symplectic manifold (M,ω).
This action is a Hamiltonian action if there exists a map

µ : M → g∗

satisfying the following properties:

1. For each x ∈ g, let µx : M → R be defined as8 µx(m) := µ(m)(x). Let vx
be the fundamental vector field associated to x. Then

dµx = −ιvxω.

2. µ is equivariant with respect to the given action of G on M and the
coadjoint action of G on g∗, i.e., ∀g ∈ G,m ∈M ,

µ(gm) = Ad∗g(µ(m))
8This is the x-component of the moment map, i.e., the composition of µ with the linear

map x : g∗ → R
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Then (M,ω,G, µ) is called a Hamiltonian G-space, and µ is called a moment
map.

Definition 2.4.6. Let G be a Lie group acting on a symplectic manifold (M,ω).
A comoment map for this action is a linear map

µ∗ : g→ C∞(M)

satisfying the following properties:

1. For each x ∈ g let vx the fundamental vector field corresponding to x ∈ g.
Then

d(µ∗(x)) = −ιvxω.

2. µ∗(x) is a Lie algebra morphism:

µ∗([x, y]) = {µ∗(x), µ∗(y)},

where { , } is the Poisson bracket on C∞(M).

Thus, a comoment map is a lift of the Lie algebra homomorphism g →
XHam(M):

C∞(M)

g XHam(M)

µ∗

where the horizontal map is the Lie algebra action, and the vertical map assigns
to a function on M its Hamiltonian vector field.

The next proposition says that for connected Lie groups the two previous
definitions are equivalent:

Proposition 2.4.7. Let G be a connected Lie group acting on a symplectic
manifold (M,ω). A map µ : M → g∗ is a moment map if and only if the "dual"
map µ∗ : g→ C∞(M) defined by µ∗(x)(m) := µ(m)(x) is a comoment map.

Proof. This proof follows very closely that of [63, Prop. 1.2, Lecture 8].

The statement of the proposition is clear regarding the condition dµ∗(x) = −ιvxω.
Thus, it remains to prove that µ : M → g∗ is equivariant if and only if
µ∗ : g→ C∞(M) is a Lie algebra morphism.
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Assume µ : M → g∗ is equivariant. Then

{µ∗(x), µ∗(y)}|m = £vxµ
∗(y)|m

= d

dt

∣∣∣∣
t=0

µ∗(y)(exp(−tx)m)

= d

dt

∣∣∣∣
t=0
〈µ(exp(−tx)m), y〉

= d

dt

∣∣∣∣
t=0
〈Ad∗exp(−tx)µ(m), y〉 using the equivariance assumption

= d

dt

∣∣∣∣
t=0
〈µ(m), Adexp(tx)y〉

= d

dt

∣∣∣∣
t=0
〈µ(m), Exp(ad(tx))y〉 using the naturality of exp

= 〈µ(m), [x, y]〉

= µ∗([x, y])|m.

Thus, if µ is equivariant, µ∗ is a Lie algebra homomorphism.

Conversely, suppose µ∗ : g→ C∞(M) is a Lie algebra homomorphism. We wish
to prove that µ : M → g∗ is equivariant.

It is known from theory of Lie groups (see, e.g., [40]) that:

1. exp : g → G is a diffeomorphism from a neighborhood of 0 ∈ TeG to a
neighborhood of e ∈ G

2. a connected Lie group G is generated by any neighborhood of the identity
e ∈ G.

Taking into account these two facts, it will suffice to prove that

µ(exp(tx)m) = Ad∗exp(tx)µ(m) (2.6)

for all x ∈ g.

Recall that, if two vector fields v and u are f -related, i.e., (df)(v|m) = uf(m)
for all m ∈M , then we have the following relationship between their flows φvt
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and φut :
f(φvt (m)) = φut (f(m)).

Let vAd
∗

x denote the fundamental vector field for the coadjoint action
corresponding to x ∈ g. It then follows that, if we can prove that vx and
vAd

∗

x are µ-related, i.e.,

(dµ)(vx|m) = vAd
∗

x |µ(m) (2.7)

for all x ∈ g, we can conclude

µ(exp(−tx)m) = Ad∗exp(−tx)µ(m)

for all x ∈ g, which is equivalent to (2.6).

Indeed, we have for all y ∈ g ' (g∗)∗:

〈(dµ)(vx|m), y〉 = y((dµ)(vx|m))

= d(y ◦ µ)(vx|m) using that y is a linear function on g∗

= £vx(y ◦ µ)|m

= £vx(µ∗(y))|m

= {µ∗(x), µ∗(y)}|m

= µ∗([x, y])|m using the assumption that µ∗ is a Lie algebra morphism

= 〈µ(m), [x, y]〉

= 〈vAd
∗

x |µ(m), y〉 using Example 2.2.17

Thus, 〈(dµ)(vx|m), y〉 = 〈vAd∗x |µ(m), y〉 for all y ∈ g, i.e., we have proved formula
(2.7).

Sometimes in the literature maps only satisfying the first requirement of the
above definitions are considered. The action of G on (M,ω) possessing such a
map is then called weakly Hamiltonian. This is the motivation to introduce the
following definition:
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Definition 2.4.8. ([29]) Let G be a Lie group acting on a symplectic manifold
(M,ω). A map

µ : M → g∗

is called a weak moment map for this action if

d(µ∗(x)) = −ιvxω,

for each x ∈ g and the dual map µ∗ : g→ C∞(M) defined by

µ∗(x)(m) := µ(m)(x).

The dual map µ∗ : g→ C∞(M) is called a weak comoment map.

We note that the second condition in the definition of the moment map, i.e.,
the equivariance condition, is required for many applications listed in §2.4.1,
such as symplectic reduction, classification of toric manifolds, and the orbit
method. If we have a weak moment map, the equivariance can often be achieved
by "averaging" over a compact Lie group or a compact manifold: e.g., if the
Lie group G is compact or the manifold M is compact and equipped with a
G-invariant volume form.

We now present examples of moment maps.

The following two examples from classical mechanics are the reason behind the
name "moment map".

Example 2.4.9. Linear momentum. Consider R6 with coordinates (q, p) =

((q1, q2, q3), (p1, p2, p3)) and symplectic form ω :=
3∑
i=1

dqi ∧ dpi. Let G = R3 act

on (R6, ω) by translations, i.e., for g ∈ R3 and (q, p) ∈ R6,

g(q, p) := (q + g, p).

This action leaves ω invariant, and for x = (x1, x2, x3) ∈ R3 = g, the
fundamental vector field is vx = −x1

∂
∂q1
− x2

∂
∂q2
− x3

∂
∂q3

.

Then

µ : R6 → R3

(q, p) 7→ p
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is a moment map, and

µ∗(x)|(q,p) = 〈µ(q, p), x〉

= ~p · ~x

is a comoment map. In classical mechanics, the vector ~p is called the momentum
vector corresponding to the position vector ~q, and the map µ is called the linear
momentum.

Example 2.4.10. Angular momentum. As in the example above, consider
R6 with coordinates (q, p) = ((q1, q2, q3), (p1, p2, p3)) and symplectic form ω :=
3∑
i=1

dqi ∧ dpi. Let G = SO(3) act on R3 by matrix multiplication, g(q) := gq for

any g ∈ G. The induced action on T ∗Q (see Definition 2.2.25) is given by

g(q, p) = (gq, p ◦ g−1
gq∗)

= (gq, p ◦ g−1)

= (gq, pgT ),

since gT g = Id, ∀g ∈ SO(3).

Then, for x ∈ g = so(3) and (q, p) ∈ T ∗Q,

vx(q, p) = d

dt

∣∣∣∣
t=0

(exp(−tx)(q, p))

= d

dt

∣∣∣∣
t=0

(exp(−tx)q, pexp(−txT ))

= (−xq, px),

since −xT = x ,∀x ∈ so(3).

Recall that so(3) can be identified with R3 equipped with the cross product of
vectors, under the following map:

I :

 0 −x3 x2
x3 0 −x1
−x2 x1 0

→
x1
x2
x3

 .

Under this identification, xq = I(x)× q and px = pT × I(x), and one can show
that
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µ : R6 → R3

(q, p) 7→ q × p

is a moment map, and

µ∗(x)|(q,p) = 〈µ(q, p), x〉

= (q × p) · I(x)

is a comoment map. In classical mechanics, the map µ is called the angular
momentum.
Example 2.4.11. Phase space. The above two examples are special cases of
the following example. Let Q be a manifold, and consider (M = T ∗Q,ω) as in
Example 2.3.6. Let G be a Lie group acting on Q, and consider the lifted action
ψ of G on T ∗Q. Then ω is invariant under this action. Indeed, let θ denote the
tautological 1-form on T ∗Q. To make the notation less busy, we will denote the
diffeomorphism ψg by just g for g ∈ G. Then for η ∈ T ∗Q and u ∈ Tη(T ∗Q),

(g∗θ)η(u) = θgη(gη∗u)

= (gη)(πgη∗(gη∗(u)))

= (gη)((π ◦ g)η∗(u))

= η(g−1
πgη∗((π ◦ g)η∗(u)))

= η((g−1 ◦ π ◦ g)η∗(u))

= η(πη∗(u)),

where in the last equality we have used that π : T ∗Q → Q is G-equivariant.
Therefore, £vxθ = 0 ∀x ∈ g, and hence, since the Lie derivative commutes with
d, we have

£vxω = −£vxdθ = −d£vxθ = 0
for all x ∈ g. Also note that, since 0 = £vxθ = dιvxθ + ιvxdθ,

dιvxθ = −ιvxdθ = ιvxω

Therefore,

µ∗ : g→ C∞(M)

x 7→ −ιvxθ
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is a weak co-moment map.

The weak moment map is then given by

µ : M → g∗, µ(m)(x) = −(ιvxθ)(m).

To show equivariance, we have to show

µ(g ·m)(x) = Adg(µ(m))(x) = µ(m)(Adg−1(x))

i.e.,
(ιvxθ)(g ·m) = (ιvAd

g−1x
θ)(m).

Looking closer at the left-hand side, we obtain

θgm(vx|gm) = θgm(ψg∗ψg−1∗(vx|gm))

= (ψ∗gθ)m(ψg−1∗(vx|gm))

= θm(ψg−1∗(vx|gm))

= θm(vAdg−1x|m),

where in the second-to-last equality we used the G-invariance of θ, and in the
last equality we used Proposition 2.2.18.

Example 2.4.12. Exact symplectic forms.

The previous example can be straightforwardly generalized to the action of
a Lie group G on a general symplectic manifold (M,ω) where ω = −dθ for
a G-invariant θ. A moment map for the action of G on (M,ω) is given by
µ : M → g∗, µ(m)(x) = −(ιvxθ)(m).

Example 2.4.13. Coadjoint orbits. Let G be a a Lie group, g its Lie algebra,
ξ ∈ g∗, and σξ an orbit of ξ under the coadjoint action of G on g∗. Consider
(σξ, ω) as in Example 2.3.7.
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Note that ω is G-invariant. Indeed, for any g ∈ G

(ψ∗gω)ξ(vx, vy) = ωgξ(ψg∗(vx|ξ), ψg∗(vy|ξ))

= ωgξ(vAdgx|gξ, vAdgy|gξ)

= 〈gξ, [Adgx,Adgy]〉

= 〈gξ,Adg[x, y]〉

= 〈ξ, Adg−1Adg[x, y]〉

= 〈ξ, [x, y]〉

= ωξ(vx, vy),

where in the second equality we used Proposition 2.2.18, and in the fourth
equality we used that Adg : g→ g is a Lie algebra homomorphism.

The moment map µ : σξ → g∗ for the action of G on (σξ, ω) is given by inclusion
σξ → g∗. Indeed, evaluating on fundamental vector fields of the action, which
form the tangent space to the orbit at any point, we get:

(dµ∗(x))(vy)|ξ = vy(µ(ξ)(x))

= vy〈ξ, x〉

= d

dt
|t=0(〈Adexp(−ty)ξ, x〉)

= d

dt
|t=0(〈ξ, Adexp(ty)x〉)

= 〈ξ, [y, x]〉

= −〈ξ, [x, y]〉

= −ωξ(vx, vy),

i.e., dµ∗(x) = −ιvxω. Note that this moment map is clearly equivariant.

2.4.3 Existence and uniqueness

This subsection addresses the questions of existence and uniqueness of moment
maps. The content of this section is based on [8, §26] and [23, §24], as well as
on [2], [31], [46], and [57]
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2.4.3.1 Uniqueness.

Let’s start from the simpler question: given a moment map for an action of G
on (M,ω), how many more are there?

Proposition 2.4.14. Let G be a Lie group acting on a connected symplectic
manifold (M,ω). If µ and µ′ are two moment maps for this same action, then

µ− µ′ ∈ [g, g]0 = H1(g,R)

Proof. Let µ and µ′ be two moment maps for the action of G on (M,ω). Then,
for all x ∈ g,

d(µ∗(x)− µ′∗(x)) = 0,

and bx := µ∗(x)− µ′∗(x) is a locally constant function on M . By assumption,
M is connected. Then, since bx is linear in x, it defines an element b ∈ g∗ by

〈b, x〉 = bx, (2.8)

for any x ∈ g.

Then µ = µ′ + b, i.e., two moment maps for the same Lie group action differ by
an element of g∗. Further, since µ∗(x) and µ′∗(x) are Lie algebra morphisms,
∀x, y ∈ g we have

b[x,y] = µ∗([x, y])− µ′∗([x, y])

= {µ∗(x), µ∗(y)} − {µ′∗(x), µ′∗(y)}

= {µ′∗(x) + bx, µ′∗(y) + by} − {µ′∗(x), µ′∗(y)}

= 0,

since Poisson bracket of any function with a constant vanishes. Thus, the
element b ∈ g∗ defined in (2.8) satisfies

〈b, [g, g]〉 = 0,

i.e., b ∈ [g, g]0 = H1(g,R).

Note that it follows from the proof above that:

Corollary 2.4.15. If µ : M → g∗ is a moment map, then µ′ := µ + b for
b ∈ H1(g,R) is another moment map for the same action.
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2.4.3.2 Existence.

Let G be a Lie group acting on a connected symplectic manifold (M,ω) by
symplectomorphisms. When does this action admit a moment map?9

Consider the map h : C∞(M)→ XHam(M), assigning to a function in C∞(M)
its Hamiltonian vector field. By Proposition 2.3.22, this map is a Lie algebra
morphism, and its kernel consists of constant functions on M , i.e., we have the
following short exact sequence of Lie algebras

0→ R→ C∞(M) h−→ XHam(M)→ 0.

Thus the Poisson algebra (C∞(M), { , }) is a central extension of
(XHam(M), [ , ]) by (R, [ , ] = 0).

Combining the exact sequence above with the sequence (2.4), we obtain the
following exact sequence.

0→ R→ C∞(M)→ XSympl(M)→ H1(M)→ 0. (2.9)

Consider the Lie algebra action map ρ : g→ XSympl(M). In order for a moment
map for this action to exist, the map ρ should admit a lift to C∞(M) that is
also a Lie algebra morphism. Such a linear lift exists if and only if the image
of ρ(g) lies in XHam(M). In other words, the map g→ XSympl(M)→ H1(M),
x 7→ [ιvxω] has to vanish. By Lemma 2.3.15, this map defines a 1-cocycle in the
Lie algebra cohomology H1(g, H1(M)) of g with values in the trivial module
H1(M). Its class is the obstruction to lifting the map ρ : g → XSympl(M) to
a linear map C∞(M). Since H1(g, H1(M)) = H1(g) ⊗ H1(M), we have the
following corollary:

Corollary 2.4.16. Let G act on (M,ω) by symplectomorphisms. If H1(g) = 0
or H1(M) = 0, then this action is weakly Hamiltonian.

Example 2.4.17. Consider S1 acting on a 2-torus (T = S1×S1, ω := dt1∧dt2)
via θ · (t1, t2) := (θ + t1, t2), where ti are the periodic (angular) coordinates.
Note that H1(g) = H1(R) = R 6= 0 and H1(T) = R2 6= 0.

The infinitesimal generator of the action corresponding to 1 ∈ R = g is v = ∂
∂t1

.
Since −ιvω = dt2, and the form dt2 is closed, v = ∂

∂t1
is symplectic. However,

it is not Hamiltonian, since dt2 is not exact: note that dt2 is not an exterior
derivative of the angular coordinate t2, because the angular coordinate is not a
well-defined function on all of T2.

9The exposition below was influenced by Jose Figueroa-O’Farrill’s post in the following
thread: https://mathoverflow.net/questions/55442/why-can-we-define-the-moment-map-in-
this-way-i-e-why-is-this-form-exact
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Now assume that we have a linear map µ : g → C∞(M) that lifts ρ : g →
XHam(M), i.e., h ◦ µ = ρ.10

C∞(M)

h

��

g
ρ

//

µ <<

XHam(M)

Since ρ is a Lie algebra homomorphism, for x, y ∈ g we have

h(µ([x, y])− {µ(x), µ(y)}) = 0.

Hence, µ([x, y])− {µ(x), µ(y)} ∈ ker(h) = R for all x, y ∈ g, and thus we can
define c ∈ ∧2g∗ by

c(x, y) = µ([x, y])− {µ(x), µ(y)} (2.10)

for x, y ∈ g.

Lemma 2.4.18. dgc = 0, i.e., c is a 2-cocycle in the Lie algebra cohomology
of g.

Proof. We have

dgc(x, y, z) =− c([x, y], z) + c([x, z], y)− c([y, z], x)

=− µ([[x, y], z]) + {µ([x, y]), µ(z)}+ µ([[x, z], y])− {µ([x, z]), µ(y)}

− µ([[y, z], x]) + {µ([y, z]), µ(x)}

={{µ(x), µ(y)}+ c(x, y), µ(z)} − {{µ(x), µ(z)}+ c(x, z), µ(y)}

+ {{µ(y), µ(z)}+ c(y, z), µ(x)}

={{µ(x), µ(y)}, µ(z)} − {{µ(x), µ(z)}, µ(y)}+ {{µ(y), µ(z)}, µ(x)}

=0,

since the Poisson bracket of any function with a constant vanishes.
10I.e., we have a weak moment map.
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Thus, c defines a cohomology class in H2(g). In the previous section we saw
that a different weak moment map µ′ for the same action differs from µ by an
element b of g∗, i.e., µ′ = µ+ b for b ∈ g∗. Thus, choosing µ′ results in

c′(x, y) : = µ′([x, y])− {µ′(x), µ′(y)}

= µ([x, y]) + b([x, y])− {µ(x) + b(x), µ(y) + b(y)}

= µ([x, y]) + b([x, y]) + {µ(x), µ(y)},

since b(x) is a constant function for any x ∈ g, and its Poisson bracket with
any function vanishes. It follows that choosing a different weak moment map
µ′ = µ+b results in c′ = c−dgb, i.e., in the same cohomology class [c]. Therefore,
we get the following:

Proposition 2.4.19. Let ρ : g → XHam(M) be an action of a Lie algebra
g on a symplectic manifold (M,ω), and let h : C∞(M) → XHam be the map
assigning a Hamiltonian vector field to a function. Then there exists a Lie
algebra homomorphism µ : g → C∞(M) such that h ◦ µ = ρ iff [c] = 0 for c
defined in 2.10

Proof. Since the choice of another moment map changes c to c′ = c − dgb,
then, if there exists a µ that is a Lie algebra homomorphism, i.e., c = 0 for
that moment map, then c′ = −dgb for any other choice of a moment map, i.e.,
[c] = [c′] = 0.

Conversely, suppose [c] = 0, i.e., c = dga for some µ and a ∈ g∗ Then µ′ = µ+a
is the desired Lie algebra homomorphism.

The following corollary guarantees existence of moment maps based on a
condition on Lie algebra cohomology of g.

Corollary 2.4.20. Let g be a Lie algebra of a connected Lie group G that acts
on (M,ω) by Hamiltonian vector fields. If H2(g) = 0, then this action admits a
moment map.

Example 2.4.21. Semi-simple Lie algebras.

For any semi-simple Lie algebra H1(g) = H2(g) = 0 11, therefore, by Corollaries
2.4.16 and 2.4.20, any action of g admits a unique moment map.

The next 2 examples have H2(g) 6= 0.
11This is a special case of the Whitehead lemmas, see, e.g., [32].
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Example 2.4.22. Translations of R2n.

Let R2 act on (R2, ω = dq ∧ dp) by translations, i.e.,

(a1, a2) · (q, p) := (a1 + q, a2 + p).

The infinitesimal generator corresponding to (a1, a2) is −a1
∂
∂q − a2

∂
∂p . Then

−ι−a1
∂
∂q−a2

∂
∂p
dq ∧ dp = a1dp− a2dq = d(a1p− a2q),

i.e., the generators of the action are Hamiltonian. However, this action does not
admit a moment map. Indeed, since R2 is abelian, [c] = 0 means c = 0. But

c(a, a′) =µ[a, a′]− {µ(a), µ(a′)}

= −{µ(a), µ(a′)}

= −ω(−a1
∂

∂q
− a2

∂

∂p
,−a′1

∂

∂q
− a′2

∂

∂p
)

= a1a
′
2 − a2a

′
1,

which does not vanish for linearly independent a and a′.

This can be straightforwardly generalized to the following statement:

R2n acting on (R2n, ω =
∑n
i=1 dqi ∧ dpi) by translations does not admit a

moment map.

Remark 2.4.23. Note the difference between the above example and the
Example 2.4.9, where Rn was acting on R2n.

Example 2.4.24. The Galilean group. ([2] [23] [46] [57]) The group of
Galilean transformations 

v1 a1
R v2 a2

v2 a3
0 0 0 1 τ
0 0 0 0 1

 ,
where R ∈ SO(3), (v1, v2, v3) = v ∈ R3, (a1, a2, a3) = a ∈ R3, τ ∈ R

is the symmetry group of Newtonian mechanics. It acts on the Newtonian
spacetime in the following way:xt

1

 7→
(Rx+ vt+ a)

t+ τ
1

 ,
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where x ∈ R3, t ∈ R.

The Galilean group acts on the phase space R6 of a particle with mass m moving
in R3 by

(q, p) 7→ (Rq + τ

m
Rp+ τv + a,Rp+mv).

It can be shown that this action preserves the canonical symplectic form
ω =

∑3
i=1 dqi ∧ dpi on R6.

The Lie algebra of the Galilean group is given by elements

x =


u1 b1

A u2 b2
u2 b3

0 0 0 0 s
0 0 0 0 0

 ,
where A ∈ so(3), (u1, u2, u3) = u ∈ R3, (b1, b2, b3) = b ∈ R3, s ∈ R.

Let (A, u, b, s) and (A′, u′, b′, s′) denote two such elements x and x′ respectively.
Then the Lie bracket of x and x′ is given by

[x, x′] = ([A,A′], Au′ −A′u,Ab′ −A′b+ s′u− su′, 0)

(see [23, §17]).

Consider the elements x = (0, u, b, 0) and x′ = (0, u′, b′, 0), i.e.,

x =


0 0 0 u1 b1
0 0 0 u2 b2
0 0 0 u2 b3
0 0 0 0 0
0 0 0 0 0

 , x′ =


0 0 0 u′1 b′1
0 0 0 u′2 b′2
0 0 0 u′2 b′3
0 0 0 0 0
0 0 0 0 0

 .
The Lie bracket of these elements vanishes, i.e., [x, x′] = 0. The fundamental
vector fields corresponding to x and x′ are vx =

∑3
i=1−bi

∂
∂qi
− uim ∂

∂pi
and

vx′ =
∑3
i=1−b′i

∂
∂qi
− u′im ∂

∂pi
.

Since H1(R6) = 0, we know that the action of G is at least weakly Hamiltonian.
Let µ be a weak moment map for this action. If [c] = 0, then c(x, x′) = 0, since
[x, x′] = 0. On the other hand, µ(x) =

∑3
i=1muiqi − bipi, therefore

{µ(x), µ(x′)} = m(u · b′ − u′ · b).

It can be shown (see, e.g., [23, §53]) that for the Lie algebra g of the Galilean
group, dimH2(g) = 1, and the cohomology class [c] is intimately related to
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the notion of mass. Namely, consider a physical system given by a symplectic
manifold with a transitive action of the Galilean group that preserves the
symplectic structure. If this action admits a weak moment map, we can choose
it so that the co-cycle c is determined uniquely as c = mc0 for c0 defined by

c0(x, x′) = u · b′ − u′ · b,

for x and x′ given by (A, u, b, s) and (A′, u′, b′, s′) respectively.

The parameter m is a constant which can be interpreted as the mass of the
physical system. For more see [57] or [23].

2.4.3.3 Moment maps for central extensions

Let G act on a symplectic manifold (M,ω). If µ is a weak moment map for
this action, but the class [c] defined in (2.10) does not vanish, then there is no
(equivariant) moment map for this action, and the comoment map µ∗ : g →
C∞(M) cannot be chosen to be a Lie algebra morphism. However, there is
always a Lie algebra morphism µ̄∗ : g⊕R→ C∞(M) from the central extension
of g corresponding to the co-cycle (2.10) (see [31]):

0 R C∞(M) XHam(M) 0

0 R g⊕ R g 0

h

µ̄∗ ρ

The map µ̄∗ is a comoment map for the action of g ⊕ R on (M,ω), where R
acts trivially.

The bracket on g⊕ R is given by

[(x, r1), (y, r2)]g⊕R := ([x, y]g, c(x, y)).

The map µ̄∗ is given by
µ̄∗(x, r) := µ∗(x)− r.
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The homomorphism property is easily verified:

{µ̄∗(x, r1), µ̄∗(y, r2)} = {µ(x) + r1, µ(y) + r2}

= {µ(x), µ(y)}

= µ([x, y]g)− c(x, y)

= µ̄∗([x, y]g, c(x, y))

= µ̄∗([(x, r1), (y, r2)]g⊕R).

Example 2.4.25. The central extension of the Galilean algebra from Example
2.4.24 by the cocycle c(x, x′) = mc0 is often referred to as the Bargmann algebra
([5]).



Chapter 3

Multisymplectic geometry

This chapter will focus on multisymplectic geometry. The material of this
chapter is based on a number of references that are cited whenever used. The
only original content in this chapter is the material in §3.3.1.1 and §3.4.2.1
which is based on ongoing work.

§3.2 introduces the necessary background on L∞-algebras.

§3.3 gives an introduction to multisymplectic geometry.

§3.4 introduces homotopy moment maps, provides examples and investigates
the questions of existence and uniqueness.

3.1 Introduction

We saw in the previous chapter that symplectic geometry is the mathematical
framework of the Hamiltonian formulation of classical mechanics. In this chapter
we will be concerned with multisymplectic geometry, which is the mathematical
framework of the Hamiltonian formulation of classical field theory.

It is also possible to give a Hamiltonian formulation of classical field theory
using symplectic geometry, and indeed this approach is often taken by physicists.
Such a formulation is obtained by considering fields to be mechanical systems
with an infinite number of degrees of freedom (see, e.g., [49, §2.3.2]). Since a
field has to be specified at every point of spacetime, the phase space will be
infinite-dimensional, which creates certain problems: e.g., infinite-dimensional
manifolds are not locally compact, and on a tangent space level a linear operator

51
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on an infinite-dimensional vector space can be injective, but not surjective ([27]),
etc. Another drawback of the symplectic formulation of classical field theory is
that it breaks covariance, i.e., the equal treatment of space and time variables,
which is crucial for relativistic theories.1

More precisely, let S be the spacetime, and let Σ ⊂ S be a certain hypersurface
(called a Cauchy surface). The (instantaneous) configuration space of a given
field theory is the space of all smooth sections Γ(P ) of a specified vector bundle
π : P → Σ. A field is then a section of π : P → Σ "evolving in time", and
a solution of the field equations is a trajectory in Γ(P ). The Hamiltonian
formulation is then defined on the cotangent bundle T ∗Γ(P ) which has a
canonical symplectic structure ([20]).

Thus, the symplectic formulation of classical field theory is formulated on an
infinite-dimensional phase space and violates the spacetime covariance. The
multisymplectic formulation of classical field theory allows to overcome the
aforementioned problems. Instead of using time as the parameter space for the
theory, multisymplectic formalism uses the whole spacetime. More precisely,
consider spacetime S of dimension n and a vector bundle π : E → S. A field φ
is a section of π : E → S, thus the fiber of π : E → S over any point s ∈ S is
the space of all possible values of the field at that point. We call π : E → S the
configuration bundle of the theory. The multiphase space M of the theory is
then defined to be the certain subbundle ∧n1T ∗E of ∧nT ∗E which is equipped
with a canonical (n+ 1)-form ω (for more see Example 3.3.6 and Remark 3.3.7
in §3.3). The Hamilton’s equations can be formulated as

−ιvfω = df,

where vf ∈ Γ(∧nTM) is an n-vector field on M , and f ∈ C∞(M).

The need for an n+ 1-form in this formulation of field theory as opposed to a
2-form in symplectic geometry is based on the following: in symplectic geometry,
since we parameterize the theory by time, the solutions of field equations
are curves in the configuration space. Since in field theory we parameterize
by n-dimensional spacetime, the solutions are "n-dimensional curves", i.e.,
sections of the configuration bundle. Since in symplectic geometry curves in the
configuration space correspond to curves in the phase space that are tangent to
the Hamiltonian vector field, the solutions of field equations should correspond
to the n-dimensional images of the sections that are tangent to Hamiltonian
n-vector fields. A 2-form associates vector fields to Hamiltonian functions,
while an (n+ 1)-form is needed to associate an n-vector field to a Hamiltonian
function.

1These two problems don’t arise in classical mechanics, since the base manifold is just R,
i.e., time, and there are no "space" coordinates.
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3.2 L∞-algebras

In this chapter we will see that each multisymplectic manifold has a certain
L∞-algebra associated to it. This section introduces L∞ algebras and the
corresponding notions and properties that will be needed for the purposes of
this thesis.

3.2.1 Introduction and definition

As with many influential ideas in science, it is not easy to pinpoint the precise
point in history when the idea of L∞- structures first appeared. According to
J. Stasheff [58, §4], the idea of "Jacobi up to homotopy" was implicitly present
in homotopy theory starting from the early 1950’s. As for the emergence of
L∞-structures in physics, according to the same paper, "In 1982, L∞-algebras
appeared in disguise in gravitational physics in work of D’Auria and Fré ...
In 1989, the L∞-structure of closed string field theory was first identified
when Zwiebach gave a talk in Chapel Hill at the Grand Unification Theory
workshop" (see [58, §4]). As a clear mathematical concept, the L∞-algebras were
introduced in [39]. Since their introduction, L∞-algebras have been ubiquitous
in mathematics as well as in theoretical physics. One of the most important
appearances of L∞-algebras has been in the proof of the celebrated "Formality
theorem" by M. Kontsevich, which implies that every Poisson manifold admits
a deformation quantization (see [37]).

We first briefly recall some notions we will need to define L∞-algebras and
morphisms between them. We begin by defining graded vector spaces.

Definition 3.2.1. Let Z be the set of integers. A Z-graded vector space or
simply a graded vector space V is a direct sum of vector spaces Vi

V =
⊕
i∈Z

Vi.

An element v ∈ Vi is said to be homogeneous of degree i. The degree of v is
denoted by |v|.

We will only consider graded vector spaces such that all the Vi are finite-
dimensional. The dual of a graded vector space is defined in the following
way:
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Definition 3.2.2. Let V =
⊕

i∈Z Vi be a graded vector space. The dual of V
is the graded vector space

V ∗ =
⊕
i∈Z

(V ∗)i,

where (V ∗)i = (V−i)∗ for all i ∈ Z.

We define the tensor product of graded vector spaces:

Definition 3.2.3. Let V and W be graded vector spaces. The tensor product
V ⊗W is defined as

V ⊗W =
⊕
i∈Z

(V ⊗W )i,

where (V ⊗W )i :=
⊕

i=k+l Vk ⊗Wl

Next we define the Koszul sign of a permutations of elements of a graded vector
space. The following definition is taken from [52].

Definition 3.2.4. Let Sn denote the group of permutations of n elements,
and let σ ∈ Sn act on elements v1, ..., vn of a graded vector space V . Let
(vi1 , ..., vik) be the ordered subset of v1, ..., vn consisting of all elements of
v1, ..., vn that have an odd degree. There is a unique permutation σ′ ∈ Sk such
that (viσ′(1) , ..., viσ′(k)) is an ordered subset of vσ(1), ..., vσ(n) consisting of all
elements that have an odd degree. Then the Koszul sign of σ acting on v1, ..., vn
is defined by

ε(σ) := (−1)σ
′
,

where (−1)σ′ denotes the sign of the permutation σ′.

Remark 3.2.5. Note that the Koszul sign defined above depends not only on
the permutation σ, but on the v1, ..., vn that the permutation is acting on, so
a more precise notation for it would be ε(σ, v1, ..., vn). However, we avoid this
notation due to the formulae in this chapter being quite cumbersome, so we
shorten the notation whenever we can.

We can now define what it means for maps between graded vector spaces to be
symmetric or skew-symmetric.

Definition 3.2.6. Let V and W be graded vector spaces, and let V ⊗n denote
the n-fold tensor product of V . The map f : V ⊗n → W is called (graded)
symmetric if

f(vσ(1), ..., vσ(n)) = ε(σ)f(v1, ..., vn)
for all permutations σ ∈ Sn.
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The map f : V ⊗n →W is called (graded) skew-symmetric if

f(vσ(1), ..., vσ(n)) = (−1)σε(σ)f(v1, ..., vn)

for all permutations σ ∈ Sn.

The following definition will be important when we define L∞-algebras.
Definition 3.2.7. Let σ ∈ Sn be a permutation, and let p, q ∈ N be such that
p+ q = n. The permutation σ is called a (p, q)-unshuffle if σ(i) < σ(i+ 1) for
all i 6= p. We will denote the set of (p, q)-unshuffles by S(p, q).

The following notion will be important when we define morphisms between
L∞-algebras. The following definition is from [52].
Definition 3.2.8 (k-th graded symmetric power of V ). Let V be a graded vector
space. Define the k-th graded symmetrization operator Symk : V ⊗k → V ⊗k by

Symk(v1 ⊗ ...⊗ vk) := 1
k!
∑
σ∈Sk

ε(σ)vσ(1) ⊗ ...⊗ vσ(k),

where Sk denotes the group of permutations of k elements, and ε(σ) is the
Koszul sign of σ acting on v1, ..., vk. Then the image of Symk is called the k-th
graded symmetric power of V . We will denote this vector space by Sk(V ). We
will also denote Symk(v1 ⊗ ...⊗ vk) just by concatenation v1...vk.

Finally, the following sign will often appear throughout this and the next
chapters, so we introduce it here. For k ∈ N, we define

ζ(k) := −(−1)
k(k+1)

2 (3.1)

We can now define L∞-algebras.
Definition 3.2.9. [39] An L∞-algebra (or a strong homotopy Lie algebra) is a
graded vector space L equipped with a collection

{lk : L⊗k → L|1 ≤ k <∞}

of graded skew-symmetric linear maps (also calledmultibrackets) with |lk| = 2−k,
such that the following identity holds for 1 ≤ m <∞:∑
i+j=m+1

(−1)i(j−1)
∑

σ∈S(i,m−i)

(−1)σε(σ)lj(li(xσ(1), ..., xσ(i)), xσ(i+1), ..., xσ(m)) = 0,

(3.2)
where σ runs through (i,m − i)-unshuffles, and ε(σ) is the Koszul sign of σ
acting on x1, ..., xm.
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We will refer to (3.2) as the generalized Jacobi identity for reasons that will
become clear further.

Unraveling the equation (3.2) for small values of m gives the following:

• For m = 1, we obtain l1 ◦ l1 = 0. Thus, l1 is a degree 2− 1 = 1 map that
squares to 0, i.e., a differential.

• For m = 2, we obtain that l1 is a graded derivation of l2.

• For m = 3 the identity (3.2) means that, up to signs,

l2(l2(x, y), z)± l2((x, z), y)± l2((y, z), x) =± l1(l3(x, y, z))± l3(l1(x), y, z)

± l3(l1(y), x, z)± l3(l1(z), x, y),

i.e., the bilinear (graded) skew-symmetric map l2 satisfies the (graded)
Jacobi identity only up to the term on the right-hand side. If l1 vanishes
on x, y, z, we get that the Jacobi identity is satisfied up to l1(l3(x, y, z)).
Since l1 is a differential, it means that the Jacobi identity is satisfied up
to an exact term or, using the language of homological algebra, "up to
homotopy" (see [39]).

Thus, we get the following familiar examples of L∞-algebras:

Example 3.2.10. A (co)chain complex (L, d = l1)

· · · d−→ Li−1
d−→ Li

d−→ Li+1 · ··

Example 3.2.11. A differential graded Lie algebra (L, l1 = d, l2 = { , }, l3 = 0)

· · · d−→ Li−1
d−→ Li

d−→ Li+1 · ··

such that for x, y ∈ L

d{x, y} = d(x), y − (−1)|x||y|{dy, x}

and

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0.

Note that, when L is concentrated in degree 0, and l1 = 0, this becomes a Lie
algebra.
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In this thesis we will mostly encounter L∞-algebras whose underlying graded
vector spaces are finite direct sums of finite-dimensional vector spaces:

Definition 3.2.12. An L∞-algebra concentrated in degrees 0,−1, ..., 1− n is
called a Lie n-algebra. Since each lk has degree 2− k, this means that for a Lie
n-algebra, lk = 0 for k > n+ 1.

3.2.1.1 Central n-extensions

We would like to generalize the concept of central extensions of Lie algebras
introduced in §2.2.4. In order to do this, we first state the following theorem
from [3], a special case of which we will prove in Chapter 5.

Theorem 3.2.13. [3, Thm.55] There is a one-to-one correspondence between
Lie n-algebras with vanishing differential l1 = 0 whose only nonzero terms are
L0 in degree zero and L1−n in degree 1− n, and quadruples (g, V, ρ, c), where g
is a Lie algebra, V is a vector space, ρ : g→ gl(V ) is a representation of g on
V , and c : ∧n+1g→ V is an (n+ 1)-cocycle in the Chevalley-Eilenberg complex
of g with values in V .

We now consider the Lie n-algebra corresponding to the Lie algebra g, the
trivial representation of g on R, and a cocycle c : ∧n+1g→ R:

Definition 3.2.14. [7, §9.3] Let g be a Lie algebra with the bracket [ , ]g, and
let c : ∧n+1g → R be a cocycle in the Chevalley-Eilenberg complex of g with
values in the trivial module R.

A central n-extension of g is a Lie n-algebra whose underlying vector space is g
in degree 0 and R in degree 1− n, and whose brackets are given by

l2(x1, x2) : = [x1, x2]g

ln+1(x1, ..., xn+1) : = c(x1, ..., xn+1)

lk ≡ 0 if k 6= 2, k 6= n+ 1

when all xi ∈ g, and are zero otherwise.

We will denote the central n-extension of g corresponding to cocycle c by ḡc.
Note that when n = 1, we recover the definition of a central extension of a Lie
algebra g by R (see §2.2.4) by setting l2 := [ , ]g + c.
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3.2.2 Characterization as differential graded co-algebras

An alternative, more conceptual characterization of L∞-algebras is given as
follows. The exposition below closely follows [39] and [52, §2.2].

Let L be a graded vector space, and let sL denote L with the grading shifted
by 1, i.e.,

(sL)i := Li+1. (3.3)

Define maps l̃k : (sL)⊗k → sL by

l̃k(sx1, ..., sxk) = (−1)α(x1,...,xk)slk(x1, ..., xk)

where

α(x1, ..., xk) =


∑
i odd

|xi| k even

1 +
∑
i even

|xi| k odd.

Note that these maps send an element of degree
k∑
i=1

(|xk| − 1) = −k +
k∑
i=1
|xk|,

where |xk| denotes the degree of xk ∈ L, to an element of degree −1 + 2− k +
k∑
i=1
|xk| = 1− k+

k∑
i=1
|xk|. Therefore, l̃k are maps of degree one. Moreover, they

are graded-symmetric (see, e.g., [52, Lemma 2.6]). We can thus characterize
the l̃k as linear maps l̃k : Sk(sL) → sL, where Sk(sL) is the k-th (graded)
symmetric power of sL. Consider S•≥1(sL) =

⊕
k≥1

Sk(sL).

The vector space S•≥1(sL) =
⊕
k≥1

Sk(sL) possesses a co-algebra structure, where

the co-product is defined as follows (see, e.g., [52]):

4(sx1...sxn) :=
n−1∑
i=1

∑
σ∈S(i,n−i)

ε(σ)(sxσ(1)...sxσ(i))⊗ (sxσ(i+1)...sxσ(n)),

where ε(σ) is the Kozsul sign of σ acting on sx1, ..., sxn.

We can extend the maps l̃k, using the same notation, as co-derivations to
l̃k : S•≥1(sL)→ S•≥1(sL), using the co-algebra structure of S•≥1(sL). Namely,
we can define:
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l̃k(sx1, sx2, ..., sxn) =
∑

σ∈S(k,n−k)

ε(σ)l̃k(sxσ(1), ..., sxσ(k))sxσ(k+1)...sxσ(n),

(3.4)

where ε(σ) denotes the Kozsul sign of σ acting on sx1, ..., sxn, and S(k, n− k)
denotes the (k, n− k)-unshuffles.

Furthermore, we combine all l̃k into a degree 1 co-derivation

l̃ :=
∑

l̃l (3.5)

We then have the following:

Proposition 3.2.15. Let (L, {lk}) be an L∞-algebra, and (S•≥1(sL), l̃) be the
corresponding co-commutative co-algebra together with the degree 1 co-derivation
l̃ defined in (3.5). Then the equations (3.2) are equivalent to l̃2 = 0.

Thus, L∞-algebras can be equivalently characterized as co-commutative co-
algebras with differentials. This allows for a more conceptual interpretation of
L∞-algebras, their generalized Jacobi identities, and morphisms of L∞-algebras.

3.2.2.1 Chevalley-Eilenberg complex of an L∞-algebra

Let (L, {lk}) be an L∞-algebra, and S•≥1(sL) be the corresponding co-
commutative co-algebra, as above.

By dualizing2 the maps l̃k defined in (3.4), we obtain maps di : S•≥1(sL)∗ →
S•≥1(sL)∗: for all ξ ∈ Sk(sL)∗,

di(ξ)(x1...xk+i−1) = ξ(l̃i(x1...xk+i−1)).

We can combine the di’s into

dCE(L) := d1 − d2 + d3 − ...+ d2k−1 − d2k + · · ·.

Then dCE(L) is a differential on S•≥1(sL)∗, and d2
CE(L) = 0 due to the

generalized Jacobi identities (3.2) or, equivalently, l̃2 = 0.

Note that we have taken the di’s corresponding to the even indices of l̃i with a
minus sign to match the conventional signs of the Chevalley-Eilenberg differential

2Assuming the Li are finite-dimensional.
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for Lie algebras. This does not affect d2
CE(L) = 0 due to the quadratic nature

of the Jacobi identities (3.2). We will illustrate this on the example of Lie
2-algebras below.

Definition 3.2.16. (see, e.g.,[56, §6])

The complex
CE(L) := (S•≥1(sL)∗, dCE(L))

is the Chevalley-Eilenberg complex of the L∞-algebra (L, {lk}).

We will demystify this construction using the example of Lie 2-algebras, which
we will need in Chapter 5:

The following example appeared in [44], with very similar wording.

Example 3.2.17. (Chevalley-Eilenberg complex of a Lie 2-algebra)
Recall that a Lie 2-algebra is an L∞-algebra concentrated in degrees 0,−1. This
means that the underlying graded vector space is of the form h⊕ g, where h and
g are vector spaces, which we assume to be finite dimensional. The respective
degrees of h and g in h⊕ g are -1 and 0.

We denote the multibrackets l1, l2 and l3, respectively, by δ, [ , ], [ , , ]. Namely,
δ, [ , ], [ , , ] are as follows:

δ : h→ g

[ , ] : ∧2g→ g

[ , ] : g⊗ h→ h

[ , , ] : ∧3g→ h

and satisfy higher Jacobi identities (3.2) that are made explicit in [3, Lemma
33], namely:

δ2 = 0

δ([x, h]) = [x, δh], [δh, k] = [h, dk]

δ([x, y, z]) = −[[x, y], z] + [[x, z], y]− [[y, z], x]

[δh, x, y] = −[[x, y], h] + [[x, h], y]− [[y, h], x]

and
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[[u, x, y], z] + [[u, y, z], x] + [[u, y], x, z] + [[x, z], u, y] = [[u, x, z], y] + [[x, y, z], u]

+ [[u, x], y, z] + [[u, z], x, y]

+ [[x, y], u, z] + [[y, z], u, x]

for all x, y, z, u ∈ g, h, k ∈ h.

Consider the maps

l̃1 : sh→ sg l̃1(h) = −δ(h)

l̃2 : S2(sg)→ sg l̃2(x, y) = [x, y]

l̃2 : sg⊗ sh→ sh l̃2(x, h) = [x, h], l̃2(h, x) = −[h, x]

l̃3 : S3(sg)→ sh l̃3(x, y, z) = −[x, y, z]

Using (3.4), we extend the l̃i to maps l̃i : S•≥1(s(h⊕ g))→ S•≥1(s(h⊕ g)) of
degree 1, by the following formulae:

l̃2(x1x2...xn) =
∑

σ∈S(2,n−2)

ε(σ)l̃2(xσ(1), xσ(2))xσ(3)...xσ(n)

and similarly for l̃1 and l̃3. Note that the xi are elements of s(h⊕ g), and their
respective degrees are the ones in s(h⊕ g); namely elements xi ∈ sh have degree
-2, and elements xi ∈ sg have degree -1. By dualization, we obtain the following
maps di : S•≥1(s(h⊕ g))∗ → S•≥1(s(h⊕ g))∗: for all ξ ∈ Sk(s(h⊕ g))∗,

d1(ξ)(x1...xk) = ξ(l̃1(x1...xk))

d2(ξ)(x1...xk+1) = ξ(l̃2(x1...xk+1))

d3(ξ)(x1...xk+2) = ξ(l̃3(x1...xk+2)).

We combine the di into one map dCE(L) := d1 − d2 + d3 : S•≥1(s(h⊕ g))∗ →
S•≥1(s(h ⊕ g))∗ of degree 1. The fact that d2

CE(L) = 0 follows from the
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generalized Jacobi identities (3.2) and, equivalently, l̃2 = 0. Indeed,

(d1 − d2 + d3)2 = d2
1 − d1d2 − d2d1 + d2

2 + d1d3 + d3d1 − d2d3 − d3d2 + d2
3,

i.e., (d1 − d2 + d3)2 = 0 is equivalent to

d2
1 = 0

−d1d2 − d2d1 = 0

d2
2 + d1d3 + d3d1 = 0

−d2d3 − d3d2 = 0,

which is equivalent to the even-numbered Jacobi identities (m being even in
(3.2)) being multiplied by minus one.

The complex
CE(L) := (S•≥1(s(h⊕ g))∗, dCE(L))

is the Chevalley-Eilenberg complex of the Lie 2-algebra h⊕ g.

3.2.3 L∞-morphisms

Now that we have defined L∞-algebras, we need to define morphisms between
them. It would be tempting to define a morphism of L∞-algebras as a linear
map that preserves the multibrackets. Indeed, such a definition has its merits:

Definition 3.2.18. ([7, Def. 3.3]) Let (L, lk) and (L′, l′k) be L∞-algebras. A
strict L∞-morphism is a linear map of degree 0 f : L→ L′ such that

l′k ◦ f⊗k = f ◦ lk

for all k ≥ 1.

However, this definition is, as the name suggests, too strict for many purposes.
The results of the previous subsection let us define a morphism of L∞-algebras
in the following way:

Definition 3.2.19. ([7, Def. 3.4]) Let (L, lk) and (L′, l′k) be L∞-algebras,
and let (S•(sL), l̃) and (S•(sL′), l̃′) be their corresponding differential graded
co-algebras. An L∞-morphism between (L, lk) and (L′, l′k) is a morphism
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F : (S•(sL), l̃) → (S•(sL′), l̃′), i.e., a morphism F : S•(sL) → S•(sL′) of
graded co-algebras such that

F ◦ l̃ = l̃′ ◦ F.

Unraveling this definition reveals that an L∞-morphism f : L→ L′ corresponds
to a collection of (graded) skew-symmetric maps3

fk : L⊗k → L′ 1 ≤ k <∞

of degree 1 − k that are "compatible with the brackets". We have taken the
following explicit definition from [60, Def. 5] and [59, Def. 32]

Definition 3.2.20. Let (L, lk) and (L′, l′k) be L∞-algebras. A collection {fk}
of graded skew-symmetric multilinear maps

fk : L⊗k → L′

of degree 1− k is an L∞-morphism {fk} : (L, lk)→ (L′, l′k) if and only if

Kk
f = 0 ∀k ∈ N,

for Kk
f : L⊗k → L′ defined by:

Kk
f (x1, ..., xk) :=

∑
i+j=k

(−1)ij
∑

σ∈S(i,j)

(−1)σε(σ)fj+1(li(xσ(1), ..., xσ(i)), xσ(i+1), ..., xσ(i+j))

−
k∑

m=1

∑
k1+...+km=k
k1≤...≤km

(−1)α(m,k̄)
∑

σ∈S<(k̄)

(−1)τ ε(τ)l′m(fk1 (xσ(1), ..., xσ(k1)), ..., fkm (xσ(k−km+1), ..., xσ(k)))

for all x = (x1, ..., xk) ∈ L⊗k, where

1. k̄ := (k1, ..., km) and α(m, k̄) := m(m− 1)/2 + k1(m− 1) + k2(m− 2) +
...+ km−1

2. S(k̄) is the set of k̄-unshuffles, i.e., permutations of {1, ..., k = k1 + · · ·km}
such that

σ(k1 + ...+ ki−1 + 1) < ... < σ(k1 + ...+ ki−1 + ki), i = 1, ...,m
3We will slightly abuse notation and identify L∞-morphisms with the corresponding maps

{fk}.
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3. S<(k̄) ⊂ S(k̄) is the set of k̄-unshuffles such that

σ(k1 + ...+ ki−1 + 1) < σ(k1 + ...+ ki−1 + ki + 1)

whenever ki = ki+1

4. f̄ := (fk1 , ..., fkm , x1, ..., xk), and τ is a permutation of {1, ...,m+ k} that
sends f̄ to

(fk1 , xσ(1), ..., xσ(k1), fk2 , xσ(k1+1), ..., xσ(k1+k2), ..., fkm , xσ(k−km+1), ..., xσ(k)).

In particular, this definition implies that if {fk} : (L, lk) → (L′, l′k) is an L∞-
morphism, then f1 is a morphism between the underlying cochain complexes
(L, l1) and (L′, l′1) of L and L′. i.e.,

f1 ◦ l1 = l′1 ◦ f1.

Note that strict morphisms as in Definition 3.2.18 then correspond to L∞-
morphisms {fk} where fk = 0 for k ≥ 2.

The next definition introduces a notion of equivalence of L∞-algebras:

Definition 3.2.21. ([7, Def. 3.6]) An L∞-morphism {fk} : (L, lk) → (L′, l′k)
is called an L∞-quasi-isomorphism if and only if the morphism of cochain
complexes

f1 : (L, l1)→ (L′, l′1)
induces an isomorphism on the cohomology

[f1] : H•(L)→ H•(L′).

Finally, we present an explicit expression for compositions of L∞-morphisms.

Definition 3.2.22. ([60, Def. 5], [59, Def. 32]) Let f : (L, lk) → (L′, l′k) and
g : (L′, l′k)→ (L′′, l′′k) be L∞-morphisms. Then the composition g ◦ f : (L, l)→
(L′′, l′′k) is an L∞-morphism defined as g ◦ f := {(g ◦ f)k}, where

(g ◦ f)k(x1, ..., xk) :=

k∑
m=1

∑
k1+...+km=k
k1≤...≤km

(−1)α(m,k̄)
∑

σ∈S<(k̄)

(−1)τ ε(τ)gm(fk1 (xσ(1), ..., xσ(k1)), ..., fkm (xσ(k−km+1), ..., xσ(xk)))

for all x = (x1, ..., xk) ∈ L⊗k, where k̄, α(m, k̄), S<(k̄), τ and f̄ are defined as
in 3.2.20.
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3.3 Multisymplectic manifolds

In this section we give a brief introduction to multisymplectic geometry,
provide examples of multisymplectic manifolds and introduce concepts of central
importance to this thesis.

3.3.1 Definition and examples

Definition 3.3.1. [9] A pair (M,ω) is an n-plectic manifold (n ≥ 1), if ω ∈
Ωn+1(M) is a closed nondegenerate (n+ 1)-form on M , i.e.,

dω = 0

and the map ι_ω : TM → ∧nT ∗M,v 7→ ιvω is injective.

Example 3.3.2. For n = 1, we obtain the familiar example of symplectic
manifolds.

Example 3.3.3. Any orientable manifold M of dimension n+ 1 equipped with
a volume form ω is an example of an n-plectic manifold.

Example 3.3.4. ([4, Ex. 2.3]) (Exterior powers of the cotangent bundle)
The following example generalizes Example 2.3.6.

Consider the n-th exterior power of the cotangent bundle ∧nT ∗Q of a manifold
Q (n ≤ k = dimQ), with the projection map

π : ∧nT ∗Q→ Q.

There is a canonical n-form θ on ∧nT ∗Q defined by

θη(v1, ..., vn) := η(π∗v1, ..., π∗vn)

for η ∈ ∧nT ∗Q and vi ∈ Tη ∧n T ∗Q. Then ω = −dθ is the canonical n-plectic
form on ∧nT ∗Q. The form ω is clearly closed. To see the non-degeneracy, it is
helpful to write ω in coordinates: Let q1, ..., qk be the coordinates on Q. The
corresponding basis of n-forms on Q is given by dqI = dqi1 ∧ · · · ∧ dqin , where
I runs through all indices of length n. Then θ is given by

θ =
∑
I

pIdqI ,

where pI are the fiber coordinates corresponding to dqI , and ω is given by

ω = −
∑
I

dpI ∧ dqI .
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Remark 3.3.5. Recall that the Darboux theorem (Theorem 2.3.5) in symplectic
geometry states that any symplectic manifold is locally symplectomorphic to
R2n = T ∗Rn with the canonical symplectic structure. This result does not
generalize to n-plectic manifolds (M,ω) for n ≥ 2, unless n+ 1 = dimM , i.e., ω
is a volume form. However, certain Darboux-type results hold for special cases
of multisymplectic manifolds. We refer the reader to [54, §4] for details.

Example 3.3.6. ([4, Ex. 2.4]) (De Donder phase space) Let π : P → M
be a fiber bundle, and let dimM = n. For p ∈ P , v ∈ TpP is called vertical if
dπ(v) = 0. Let ∧n1T ∗P → P denote the bundle over P whose fiber at p ∈ P
consists of all n-forms α ∈ ∧nT ∗pP such that

ιv1ιv2α = 0,

for all vertical v1, v2 ∈ TpP . Note that ∧n1T ∗P is a subbundle of ∧nT ∗P . Let
i : ∧n1T ∗P → ∧nT ∗P denote the inclusion map, and let ω be the canonical
n-plectic form on ∧nT ∗P constructed in the previous example. Then i∗ω is an
n-plectic form on ∧n1T ∗P .

Remark 3.3.7. It can be shown (see, e.g., [21]) that ∧n1T ∗P is isomorphic
to the affine dual of the first jet bundle J 1P ∗. To see the connection with
classical mechanics, consider a point moving in space Q. Take P to be the
trivial bundle P = M ×Q→M , where M = R represents time. Then sections
of this bundle represent paths of the particle, and the first cojet bundle J 1P ∗

is symplectomorphic to the extended phase space T ∗(R×Q) of the particle.

Example 3.3.8. ([4, Ex. 2.2]) Let G be a compact simple Lie group. There
exists an Ad-invariant inner product 〈 , 〉 on g (see, e.g., [36, §4, Prop. 4.24]).
Consider the following 3-form on G

ω := 〈θL, [θL, θL]〉,

where θL is a 1-form on G called the Maurer-Cartan form, given by θLg : TgG→
TeG, v 7→ Lg−1∗v. This form is bi-invariant and so, as any bi-invariant form on
a Lie group, is closed. It is also non-degenerate since [g, g] = g for a semi-simple
Lie algebra. Thus, (G,ω) is a 2-plectic manifold.

3.3.1.1 Generalization of coadjoint orbits

The following material is original and has not appeared in any papers or preprints
yet.

Let g be a Lie algebra, and h a vector space; suppose we have a representation
ρ : g→ gl(h) of a Lie algebra g, and a 3-cocycle c in the Lie algebra cohomology
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of g with values in h. There is also an induced representation ρ∗ of g on the
dual h∗: for ξ ∈ h∗, the element ρ∗(x) · ξ for x ∈ g is given by

(ρ∗(x) · ξ)(h) := −ξ(ρ(x) · h) (3.6)

for all h ∈ h.

By Proposition 2.2.5, there is also a representation φ : G→ GL(h) of G on h,
where G is the connected, simply-connected Lie group integrating g. There is
also an induced representation φ∗ of G on h∗, where for any g ∈ G, (φ∗(g) · ξ)(h)
is given by

(φ∗(g) · ξ)(h) := ξ(φ(g−1) · h).
We will often omit the φ or φ∗ and denote the action of an element g ∈ G on
h ∈ h and ξ ∈ h∗ by g · h and g · ξ respectively.

We define a 3-form ω on an orbit σξ of ξ ∈ h∗ under the action of G by

ωξ(vx, vy, vz) := ξ(c(x, y, z)), (3.7)

where the vx, vy, vz are the fundamental vector fields corresponding to x, y, z
respectively: for x ∈ g, the vector field vx at point ξ ∈ h∗ is given by

vx|ξ = d

dt
|t=0exp(−tx) · ξ = ρ∗(−x) · ξ, (3.8)

where ρ∗ is the dual representation of g on h∗. Note that the form (3.7) is not
necessarily well-defined.

Let gξ denote the Lie algebra of the stabilizer of ξ under the action of G. Then,
by Proposition 2.2.24, gξ = {x ∈ g : vx|ξ = 0}, i.e., gξ = {x ∈ g : ρ∗(−x) ·ξ = 0}.
or equivalently, using the definition of the dual representation,

gξ = {x ∈ g : ξ ◦ ρ(x) = 0}.

The form (3.7) is well-defined if

gξ ⊂ ker(ξ ◦ c) (3.9)

and non-degenerate if
gξ = ker(ξ ◦ c). (3.10)

Note that, since c ∈ ∧3g∗ ⊗ h and ξ ∈ h∗, we have ξ ◦ c ∈ ∧3g∗.

Definition 3.3.9. An element c of ∧kg∗ ⊗ h is G-invariant if

g · c(x1, ..., xk) = c(Adgx1, ..., Adgxk)

for all g ∈ G and all xi ∈ g.
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Proposition 3.3.10. Let c ∈ ∧3g∗ ⊗ h be G-invariant. Then, if the condition
(3.10) holds at one point of the orbit σξ, it holds at all points of σξ.

Proof. We have to show that, if ker(ξ ◦ c) = gξ, then ker(gξ ◦ c) = ggξ for all
g ∈ G. Note that ggξ = Adggξ. First, we show that ggξ = Adggξ ⊂ ker(gξ ◦ c).
For ∀x ∈ gξ, using the invariance of c, we get:

(gξ ◦ c)(Adgx, y, z) = ξ(g−1 · (c(Adgx, y, z))) = ξ(c(Adg−1Adgx,Adg−1y,Adg−1z))

= ξ(c(x,Adg−1y,Adg−1z))

= 0.

Now suppose x ∈ ker(gξ ◦c), we want to show x ∈ ggξ = Adggξ. For all y, z ∈ g,
by invariance of c, we have:

0 = (gξ ◦ c)(x, y, z) = ξ(g−1 · c(x, y, z)) = ξ(c(Adg−1x,Adg−1y,Adg−1z))

It follows, that for every x ∈ ker(gξ ◦ c), Adg−1x ∈ ker(ξ ◦ c) = gξ. Then
x = Adg ·Adg−1x ∈ ggξ.

The following proposition shows that ω defined in (3.7) is closed.
Proposition 3.3.11. Let ω be the 3-form defined in (3.7). Then dω = 0.

Proof. By the definition of dω, we have:

(dω)ξ(vx, vy, vz, vu) = (vx · ω(vy, vz, vu))ξ − (vy · ω(vx, vz, vu))ξ + (vz · (vx, vy, vu))ξ

− (vu · ω(vx, vy, vz))ξ − ωξ([vx, vy], vz, vu) + ωξ([vx, vz], vy, vu)

− ωξ([vx, vu], vy, vz)− ωξ([vy, vz], vx, vu) + ωξ([vy, vu], vx, vz)

− ωξ([vz, vu], vx, vy)

Evaluating the first summand on the righ-hand side of the above expression
gives: (vx · ω(vy, vz, vu))ξ = vx · 〈c(y, z, u), ξ〉, where 〈 , 〉 is the pairing between
h and h∗. Note that 〈c(y, z, u), ξ〉 is a linear function of the argument ξ. For
convenience we denote this function by f : h∗ → R, i.e., f(ξ) = 〈c(y, z, u), ξ〉 for
ξ ∈ h∗. Then,

vx · 〈c(y, z, u), ξ〉 = vx · f(ξ) = (df)(vx|ξ) = f(vx|ξ),

where we have used that the derivative of a linear function f is the function
itself, and that vx|ξ ∈ h∗, since vx is a linear vector field on a vector space h∗.
Therefore,

vx ·〈c(y, z, u), ξ〉 = 〈c(y, z, u), vx|ξ〉 = (ρ∗(−x)·ξ)(c(y, z, u)) = ξ(ρ(x)·c(y, z, u)),
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where we have used (3.8) and the definition of the dual representation (3.6).
Similarly, we get analogous expressions for the 3 other terms on the right-hand
side of the first formula in the proof. Using this, the definition of ωξ, and the
fact that v[x,y] = [vx, vy], we obtain:

(dω)ξ(vx, vy, vz, vu) = ξ(ρ(x) · c(y, z, u))− ξ(ρ(y) · c(x, z, u)) + ξ(ρ(z) · c(x, y, u))

− ξ(ρ(u) · c(x, y, z))− ξ(c([x, y], z, u)) + ξ(c([x, z], y, u))

− ξ(c([x, u], y, z))− ξ(c([y, z], x, u)) + ξ(c([y, u], x, z))

− ξ(c([z, u], x, y))

= 0,

since c is a cocycle for the Lie algebra cohomology of g with values in h.

The next proposition shows that, if c is an invariant cocycle, then ω is G-
invariant. We will first need the following short lemma.

Lemma 3.3.12. c ∈ ∧3g∗ ⊗ h is G-invariant if and only if the following holds
for all x, y, z, u ∈ g:

ρ(u)(c(x, y, z))− c([u, x], y, z) + c([u, y], x, z)− c([u, z], x, y) = 0 (3.11)

Proof. Assume c is G-invariant. Then

ρ(u)(c(x, y, z)) = d

dt
|t=0exp(tu) · c(x, y, z)

= d

dt
|t=0c(Adexp(tu)x,Adexp(tu)y,Adexp(tu)z))

= c(adux, y, z) + c(x, aduy, z) + c(x, y, aduz)

The converse follows from G being connected.

Proposition 3.3.13. Let c ∈ ∧3g∗ ⊗ h be invariant, and ω the corresponding
3-form defined in (3.7). Then ω is invariant under the G-action on σξ.

Proof. Let u ∈ g an vu be the corresponding fundamental vector field of the
action. Since G is connected, it suffices to prove that £vuω = 0 for all u ∈ g.
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By the Leibniz rule for the Lie derivative we have

(£vuω)(vx, vy, vz)ξ = £vu(ω(vx, vy, vz))ξ − ω(£vuvx, vy, vz)ξ

− ω(vx,£vuvy, vz)ξ − ω(vx, vy,£vuvz)ξ

= (vu · ω(vx, vy, vz))ξ − ω([vu, vx], vy, vz)ξ

− ω(vx, [vu, vy], vz)ξ − ω(vx, vy, [vu, vz])ξ.

We showed in the proof of Proposition 3.3.11 that (vu · ω(vx, vy, vz))ξ equals
ξ(ρ(u) · c(x, y, z)). Using this and the definition of ω in (3.7), we see that the
right-hand side becomes

ξ(ρ(u) · c(x, y, z)− c([u, x], y, z)− c(x, [u, y], z)− c(x, y, [u, z]))

Using the invariance of c and (3.11), we obtain £vuω = 0.

Combining propositions (3.3.11) and (3.3.13), we obtain:

Proposition 3.3.14. Let c be a G-invariant 3-cocycle in the Chevalley-
Eilenberg cohomology of g with values in h. Consider the action of G on
h∗, and let σξ be the orbit of ξ ∈ h∗ under this action. Assume gξ = ker(ξ ◦ c),
and let ω be a 3-form on σξ defined by (3.7). Then (σξ, ω) is a 2-plectic manifold
with a G-invariant 2-plectic form.

We can consider the special case of the above, where h = ∧2g, the representation
of g on h = ∧2g is the adjoint representation

adx(y ∧ z) = adxy ∧ z + x ∧ adxz,

and the cocycle c is given by

c = dgId∧2g,

where Id∧2g is the identity map ∧2g → ∧2g, x ∧ y 7→ x ∧ y, and dg is the
differential in the Chevalley Eilenberg cohomology of g with values in the
representation ∧2g. The 2-cochain Id∧2g ∈ ∧2g∗ ⊗ ∧2g is G-invariant, since

adu · (Id∧2g(x, y)) = adu · (x ∧ y) = (adux ∧ y) + (x ∧ aduy)

= Id∧2g(adux, y) + Id∧2g(x, aduy)

by the definition of the adjoint action. We will see later in this chapter, namely
in Lemma 3.4.7, that this implies G-invariance of c = dgId∧2g.
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Thus, for ξ ∈ ∧2g∗ we consider the 2-plectic form ω form on the orbit of ξ given
by

ωξ(vx, vy, vz) = (ξ ◦ dgId∧2g)(x, y, z)

= ξ(adx(y ∧ z))− ξ(ady(x ∧ z)) + ξ(adz(x ∧ y))

− ξ([x, y], z) + ξ([x, z], y)− ξ([y, z], x)

= ξ([x, y], z) + ξ(y, [x, z])− ξ([y, x], z)− ξ(x, [y, z])

+ ξ([z, x], y) + ξ(x, [z, y])− ξ([x, y], z) + ξ([x, z], y)− ξ([y, z], x)

= ξ([x, y], z)− ξ([x, z], y) + ξ([y, z], x).

Note that, up to sign, the last expression on the right-hand side coincides
with the Chevalley-Eilenberg differential of ξ ∈ ∧2g∗ with values in the trivial
representation, evaluated at x, y, z ∈ g.

Remark 3.3.15. Note that this generalizes the symplectic structure on the
coadjoint orbits (Example 2.3.7) of g, where

ωξ(vx, vy) = ξ([x, y]).

Indeed, consider the adjoint representation of g on itself and the Chevalley-
Eilenberg complex of g with values in this representation. Then for the 1-cochain
Idg : g∗ ⊗ g given by Idg(x) = x, we have:

dgIdg(x, y) = adx · Idg(y)− ady · Idg(x)− Idg([x, y])

= [x, y]− [y, x]− [x, y]

= [x, y],

so (ξ ◦ dgIdg)(x, y) = ξ([x, y]) and ωξ(vx, vy) = (ξ ◦ dgIdg)(x, y)

However, unlike the 2-plectic case, the well-definedness and nondegeneracy of ω
are automatic in the symplectic case. Namely, the condition

gξ = ker(ξ ◦ c)

becomes
gξ = ker(ξ ◦ dgIdg)

which holds at all points ξ ∈ g∗, since gξ = {x ∈ g|vx|ξ = 0} (Proposition 2.2.24)
and 〈vx|ξ, y〉 = 〈ξ, [x, y]〉 for the coadjoint action of G on g∗ (Example 2.2.17).

Meanwhile, for ξ ∈ ∧2g∗
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〈vx|ξ, y ∧ z〉 = d

dt

∣∣∣∣
t=0
〈Adexp(−tx)ξ, y ∧ z〉

= d

dt

∣∣∣∣
t=0
〈ξ, Adexp(tx)(y ∧ z)〉

= d

dt

∣∣∣∣
t=0
〈ξ, Adexp(tx)y ∧Adexp(tx)z)〉

= 〈ξ, [x, y] ∧ z + y ∧ [x, z]〉,

so x ∈ gξ iff
〈ξ, [x, y] ∧ z + y ∧ [x, z]〉 = 0 (3.12)

for all y, z ∈ g.

On the other hand, x ∈ ker(ξ ◦ c) = ker(ξ ◦ dgId∧2g) iff

〈ξ, [x, y] ∧ z − [x, z] ∧ y + [y, z] ∧ x〉. (3.13)

Therefore, comparing formulae (3.12) and (3.13), we see that they are different,
and therefore the condition gξ = ker(ξ ◦ c) is nontrivial.

For example, if x ∈ gξ then x ∈ ker(ξ ◦ dgId∧2g) iff 〈ξ, x ∧ [y, z]〉= 0 for all
y, z ∈ g.

Below we present examples of Lie algebras g and ξ ∈ ∧2g∗ where the condition
gξ = ker(ξ ◦ dgId∧2g) holds.

Example 3.3.16. Let g be the 3-dimensional Lie algebra with the bracket
relations between the basis elements given by [x, y] = 0, [x, z] = x, [y, z] = y.
The point ξ = x∗ ∧ y∗ ∈ ∧2g∗ satisfies gξ = 0.

Furthermore, calculating ξ◦dgId on basis elements gives ξ◦dgId = −2x∗∧y∗∧z∗,
so clearly ker(ξ ◦ dgId) = 0 = gξ, and, therefore, the form ω is well-defined and
nondegenerate.

Example 3.3.17. Let g be the 3-dimensional Lie algebra with the bracket
relations between the basis elements given by [x, y] = 0, [x, z] = y, [y, z] = x+ y.
The point ξ = x∗ ∧ y∗ ∈ ∧2g∗ satisfies gξ = 0.
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Furthermore, calculating ξ ◦ dgId on basis elements gives ξ ◦ dgId = −x∗ ∧
y∗ ∧ z∗, so clearly ker(ξ ◦ dgId) = 0 = gξ, and the form ω is well-defined and
nondegenerate.

The following example is taken from [41].

Example 3.3.18. ([41, Ex. 5.7]). Let g = su(3) be the Lie algebra of complex
matrices with the following basis: Aj = i(Ejj−Ej+1,j+1), Bkl = Ekl−Elk, Ckl =
i(Ekl + Elk), for j, k = 1, 2, k < l = 2, 3, where Epq is an elementary 3 by 3
matrix with 1 at position (p, q). Let A∗j , B∗kl, C∗kl denote the dual basis.

Take ξ = B∗12 ∧ B∗13 − C∗12 ∧ C∗13. By direct computation, one finds that
gξ =< A2, B23, C23 > and that (ξ ◦ dgId) = 3A∗1 ∧ (B∗13 ∧ C∗12 −B∗12 ∧ C∗13), so
ker(ξ ◦ dgId) = gξ. Therefore, the form ω is well-defined and nondegenerate.

Example 3.3.19. Let g be the 4-dimensional Lie algebra with the following
bracket relations among the basis elements x, y, z, u ∈ g: [x, y] = x, [z, u] = 0,
all other brackets being 0. The points ξ = x∗ ∧ y∗ + x∗ ∧ z∗ + x∗ ∧ u∗ and
ξ′ = x∗ ∧ z∗ + y∗ ∧ z∗ + u∗ ∧ z∗ satisfy gξ = gξ′ = 0, thus gξ ⊂ (ξ ◦ dgId),
gξ′ ⊂ (ξ′ ◦ dgId), and ω is well-defined on both σξ and σξ′. However,

ξ ◦ dgId = x∗ ∧ y∗ ∧ z∗ + x∗ ∧ y∗ ∧ u∗ − x∗ ∧ z∗ ∧ u∗

and
ξ′ ◦ dgId = x∗ ∧ y∗ ∧ z∗ − x∗ ∧ z∗ ∧ u∗ − y∗ ∧ z∗ ∧ u∗,

and both of them are degenerate. Therefore, the forms ωξ and ωξ′ defined
respectively on σξ and σξ′ are well-defined, but degenerate.

3.3.2 Hamiltonian forms

Definition 3.3.20. A vector field v ∈ X(M) on an n-plectic manifold (M,ω)
is a multisymplectic vector field if

£vω = 0.

We will denote the set of multisymplectic vector fields by XMSympl(M)

The following lemma is fully analogous to Lemma 2.3.10, and the proof is exactly
the same.

Lemma 3.3.21. Let (M,ω) be an n-plectic manifold. A vector field v ∈ X(M)
is a multisymplectic vector field iff ιvω is closed.
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Definition 3.3.22. An (n − 1)-form α on an n-plectic manifold (M,ω) is
Hamiltonian iff there exists a vector field vα ∈ X(M) such that

dα = −ιvαω.

The vector field vα is the Hamiltonian vector field corresponding to α.

We will denote the set of Hamiltonian vector fields by XHam(M) and the set of
Hamiltonian (n− 1)-forms by Ωn−1

Ham(M).

Remark 3.3.23. Note that, unlike in symplectic geometry, where due to
ω inducing an isomorphism between TM and T ∗M any f ∈ C∞(M) was a
Hamiltonian 0-form, not every (n− 1)-form is a Hamiltonian form. However,
due to the non-degeneracy of ω, the corresponding Hamiltonian vector field is
unique for each α ∈ Ωn−1

Ham(M), as in symplectic geometry.

Just like in symplectic geometry, v ∈ X(M) is a Hamiltonian vector field iff ivω
is exact. Therefore, all Hamiltonian vector fields are also mutisymplectic, i.e.,
XHam(M) ⊂ XMSympl(M).

Again, as in symplectic geometry, we have the following:

Lemma 3.3.24. The Lie bracket of multisymplectic vector fields is Hamiltonian,
i.e.,

[XMSympl,XMSympl] ⊂ XHam(M).

Corollary 3.3.25. XHam(M) is a Lie algebra ideal of XMSympl(M).

The following useful formula is known as the "Extended Cartan Formula" and
can be found in [42, Lemma 3.4].

Lemma 3.3.26. Let α ∈ Ωm(M). Then for all k ≥ 2 and all vector fields
v1, ..., vk, we have:

(−1)kdι(v1 ∧ ... ∧ vk)α =
∑

1≤i<j≤k
(−1)i+jι([vi, vj ] ∧ v1 ∧ ... ∧ v̂i ∧ ... ∧ v̂j ∧ ... ∧ vk)α

+
k∑
i=1

(−1)iι(v1 ∧ ... ∧ v̂i ∧ ... ∧ vk)£viα

+ ι(v1 ∧ ... ∧ vk)dα,

where ι(. . . ) denotes contraction with a multivector field: ι(vα1 ∧ ... ∧ vαk)ω =
ιvαk ...ιvα1

ω.
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3.3.3 The Lie n-algebra of observables

Recall that the space of smooth functions C∞(M) on a symplectic manifold
(M,ω) had a Lie algebra structure, which we called the Lie algebra of observables,
and the bracket was given by

{f, g} = ιvf∧vgω,

where vf and vg were the Hamiltonian vector fields of f and g.

We would like to similarly associate a Lie algebra of observables to an n-plectic
manifold for n > 1. Since in the symplectic case the algebra of observables
consisted of (Hamiltonian) functions, the natural choice in n-plectic geometry
would be the space of Hamiltonian (n−1)-forms. Analogously to the symplectic
case, we can define the bracket of Hamiltonian (n− 1)-forms to be (see, e.g., [4,
§3])

{α, β} = ιvα∧vβω.

Indeed, we have

Lemma 3.3.27. For α, β ∈ Ωn−1
Ham(M),

d{α, β} = −ι[vα,vβ ]ω,

i.e., {α, β} ∈ Ωn−1
Ham(M), and the Hamiltonian vector field corresponding to

{α, β} is [vα, vβ ].

Proof. Exactly as the proof of Lemma 2.3.15, noting that dιvα∧vβω =
dιvβ ιvαω = −dιvαιvβω.

This bracket is also manifestly skew-symmetric. However, due to Lemma 3.3.26
and Lemma 3.3.27, it does not satisfy the Jacobi identity:

−dι(vα ∧ vβ ∧ vγ)ω = −ι([vα, vβ ] ∧ vγ)ω + ι([vα, vγ ] ∧ vβ)ω − ι([vβ , vγ ] ∧ vα)ω

= −{{α, β}, γ}+ {{α, γ}, β} − {{β, γ}, α}

= {α, {β, γ}}+ {β, {γ, α}}+ {γ, {α, β}},

i.e., the Jacobi identity is satisfied only up to an exact term 4.
4Note that this exact term vanishes if ω is a symplectic, i.e., 2-form.
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Remark 3.3.28. Recall from Lemma 2.3.18, that in symplectic geometry,
{f, g} = ω(vf , vg) = £vf g. This is not true for n-plectic manifolds with n > 1,
since

ιvα∧vβω = −ιvβ∧vαω

= −ιvαιvβω

= ιvαdβ

= £vαβ − dιvαβ.

This suggests that we could alternatively define a bracket of two Hamiltonian
forms as {α, β} := £vαβ. However, the bracket defined this way is skew-
symmetric only up to an exact form: {α, β}+ {β, α} = d(ιvαβ + ιvβα). But it
satisfies the Leibniz identity: {α, {β, γ}} = {{α, β}, γ}+ {β, {α, γ}}. For more,
see [4, §3] and [50, §6].

Thus, there seems to be no Lie algebra of observables associated to a
multisymplectic manifold. However, as C. L. Rogers demonstrated in [50],
to every n-plectic manifold one can associate a certain Lie n-algebra. We
present the relevant theorem without proof:

Theorem 3.3.29. ([50, Thm. 5.2]) Given an n-plectic manifold, there is a
corresponding Lie n-algebra (L, {[ , ... , ]k}) with underlying graded vector space

Li =
{

Ωn−1
Ham(M) i = 0

Ωn−1+i(M) 1− n ≤ i < 0

and maps {[ , ... , ]k : L⊗k → L | 1 ≤ k <∞} defined as

[α]1 = dα, if |α| < 0

and, for k > 1,

[α1, ... , αk]k =
{
ζ(k)ι(vα1 ∧ ... ∧ vαk)ω if |α1 ⊗ ...⊗ αk| = 0
0 if |α1 ⊗ ...⊗ αk| < 0,

where vαi is the Hamiltonian vector field associated to αi ∈ Ωn−1
Ham(M), ζ(k) =

−(−1)
k(k+1)

2 , and ι(. . . ) denotes contraction with a multivector field: ι(vα1 ∧
... ∧ vαk)ω = ιvαk ...ιvα1

ω.

Definition 3.3.30. The Lie n-algebra defined in Theorem 3.3.29 is called the
Lie n-algebra of observables corresponding to an n-plectic manifold and denoted
L∞(M,ω).
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The underlying (co)chain complex of this Lie n-algebra is

C∞(M) d−→ Ω1(M) d−→ · · · d−→ Ωn−2(M) d−→ Ωn−1
Ham,

with Ωn−1
Ham in degree 0 and C∞(M) in degree 1− n.

Example 3.3.31. When n = 1, L∞(M,ω) is the Lie algebra of observables
(C∞(M), { , }) of a symplectic manifold: the underlying vector space is C∞(M),
and the only nonzero multibracket is given by [f, g] = {f, g} = ω(vf , vg).

Example 3.3.32. For a 2-plectic manifold (M,ω), L∞(M,ω) has

C∞(M) d−→ Ω1
Ham(M)

as the underlying cochain complex. The multibrackets [ , ], [ , , ] are given by

[α1, α2] = ι(vα1 ∧ vα2)ω

[α1, α2, α3] = ω(vα1 , vα2 , vα3).

3.4 Moment maps in multisymplectic geometry

In this section we introduce the concept of moment map in symplectic geometry,
give examples of such moment maps and investigate existence and obstructions
to existence of moment maps. The material of this section is based on [7], [18],
[53].

3.4.1 Introduction

Now that we have introduced multisymplectic manifolds, a natural question to
ask is how to generalize the concept of moment map (2.4) to the multisymplectic
setting.

There have been multiple attempts at tackling this problem in the literature.
In [21, §4C] a moment map is defined as follows: Let G be a Lie group acting
on an n-plectic manifold (M,ω) so that the induced infinitesimal action of g is
by multisymplectic vector fields. A map

J : M → g∗ ⊗ ∧n−1T ∗M

that satisfies
d〈J, x〉 = −ιvxω
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is called a covariant momentum map or a multimomentum map for this action.
We can consider the "dual" map f : g → Ωn−1(M). This map is clearly a
generalization of the weak symplectic moment map: namely, for n = 1 we get a
map J : M → g∗ such that d〈J, x〉 = −ιvxω, which is precisely the definition of
a weak moment map in symplectic geometry. In [10] further parallels between
this map and the symplectic moment map are drawn.

Another generalization of the symplectic moment map is presented in [42]:

Let G be a Lie group acting on an n-plectic manifold (M,ω) preserving ω. Let
Pn,g be the n-th Lie kernel of g defined in Definition 2.2.36. An equivariant
map

µ : M → P ∗n,g

such that
d〈µ(m), p〉 = −ιvpω

for all p ∈ Pn,g is called a multimoment map for the action of G on (M,ω). Here
vp is the fundamental multivector field corresponding to p, defined in Definition
2.2.20

For applications of these two notions of moment maps we refer the reader to
[21], [10], and [42].

In Chapter 4 we will present yet another generalization of the symplectic moment
map to n-plectic geometry.

In this section we present the notion of a moment map introduced by M.
Callies, Y. Fregier, C. L. Rogers, and M. Zambon in [7]. This notion generalizes
the symplectic moment map and, in a certain sense, the two moment maps
described above. Namely, for a Lie algebra action g→ X(M) on an n-plectic
manifold (M,ω), a homotopy moment map is defined to be an L∞-morphism
(fk) : g → L∞(M,ω) such that −ivxω = d(f1(x)) for all x ∈ g. When n = 1,
this definition becomes the definition of symplectic comoment map (Definition
2.4.6). Moreover, the first component of the homotopy moment map is the
dual of a covariant momentum map, and the n-th component of an equivariant
homotopy moment map restricted to the n-th Lie kernel, is, up to sign, the dual
of a multimoment map introduced above.

Examples and applications of this map are extensively studied in [7]. For
example, it is shown that, as is the case for the symplectic moment map, a
homotopy moment map corresponds to an (n+ 1)-cocycle in the equivariant
de Rham complex CG(M) := (S(g∗)⊗ Ω(M))G, with the differential given by
dG(α)(x) = d(α(x))− ιvx(α(x)) for all x ∈ g.
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3.4.2 Definition and examples

The results of the previous section suggest that we can define a multisymplectic
co-moment map as an L∞-morphism between g and L∞(M,ω).

Definition 3.4.1. ([7, Def. 5.1]) Let g→ X(M), x 7→ vx be a Lie algebra action
on an n-plectic manifold (M,ω) by Hamiltonian vector fields. A homotopy
moment map for this action (or a g moment map for short) is an L∞-morphism

{fk} : g→ L∞(M,ω)

such that
−ιvxω = d(f1(x)) for all x ∈ g.

In other words, a homotopy moment map {fk} : g→ L∞(M,ω) is a lift of the
Lie algebra morphism g→ XHam(M), x→ vx in the category of L∞-algebras.
This can be illustrated by the diagram below, where the horizontal map is the
Lie algebra action, and the vertical map is the L∞-morphism that in degree 0
assigns to a Hamiltonian (n− 1)-form its Hamiltonian vector field, and is zero
in all other degrees. This map, which we denote by h, is a strict L∞-morphism.
Indeed, since the only non-vanishing component of the map is in degree zero,
we only have to check that

h([α1, α2]2) = [h(α1), h(α2)],

where the bracket on the left is the multibracket [ , ]2 defined in Theorem
3.3.29, and the bracket on the right is the Lie bracket of Hamiltonian vector
fields. This identity holds by definition of the bracket [ , ]2 and Lemma 3.3.27.

L∞(M,ω)

g XHam(M)

h
{fk}

Using Theorem 3.3.29 and Definition 3.2.20, we can conclude (see [7, §5]) that
a homotopy moment map g→ L∞(M,ω) consists of a collection of n graded
skew-symmetric maps

fk : g⊗k → L, 1 ≤ k ≤ n

of degree |fk| = 1− k, such that

− ιvxω = d(f1(x)) (3.14)
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and the following equations hold:∑
1≤i<j≤k

(−1)i+j+1fk−1([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xk) = dfk(x1, ..., xk)

+ ζ(k)ι(vx1 ∧ ... ∧ vxk)ω
(3.15)

for 2 ≤ k ≤ n and∑
1≤i<j≤n+1

(−1)i+j+1fn([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xn+1) = ζ(n+1)ι(vx1∧...∧vxn+1)ω,

(3.16)

where vxi is the vector field associated to xi via the g-action, and ζ(k) =
−(−1)

k(k+1)
2 .

Note that these equations can be written in a shorter way; namely, for 1 ≤ k ≤
n+ 1 and all p ∈ ∧kg:

− fk−1(δk(p)) = dfk(p) + ζ(k)ιvpω (3.17)

where δk is the k-th Lie algebra homology differential (Definition 2.2.35), vp is
the fundamental vector field corresponding to p (Definition 2.2.20), and f0 and
fn+1 are defined to be zero: f0 = fn+1 = 0.

Remark 3.4.2. For the algebraically inclined reader, we offer yet another
(equivalent, but different in flavor) definition of homotopy moment maps used
in [14] and [13].

Let M be an n-plectic manifold with a multisymplectic action of a Lie group G.
Let (S•(sg), l̃) be the differential graded co-commutative co-algebra, as defined
in §3.2.2, corresponding to the Lie algebra g, and let Ω•tr(n)(M) be the de Rham
complex of M truncated at n and degree-shifted by n+ 1, i.e.,

Ω•tr(n)(M) := C∞(M)⊕ · · · ⊕ Ωn−1(M)⊕ Ωn(M),

where C∞(M) has degree −n − 1, Ω1(M) has degree −n, Ω2(M) has degree
−n+ 1, etc., and, finally, Ωn(M) has degree -1.

Define h to be the map h : S•(sg)→ Ω•(M), p 7→ −ζ(k)ιvpω, where vp is the
fundamental vector field corresponding to p (Definition 2.2.20). By Lemma
3.3.26, this is a cochain map. Then a homotopy moment map f : g→ L∞(M,ω)
is a cochain homotopy between the cochain map h : S•(sg)→ Ω•(M) and the
zero map:
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0 Sn+1(sg) Sn(sg) · · · S2(sg) S1(sg) 0

0 C∞(M) Ω1(M) · · · Ωn−1(M) Ωn(M) 0

l̃

h

l̃

h
f

l̃

f

l̃

h
f

h

l̃

f

d d d d

We will not use this definition in this thesis, but it certainly has its merits.

Now that we have defined homotopy moment maps, we present some examples:

Example 3.4.3. (Symplectic moment maps) When n = 1, a homotopy
moment map is the already familiar moment map, so all examples of moment
maps from Chapter 2 are examples of homotopy moment maps.

The following example generalizes Example 2.4.12.

Example 3.4.4. (Exact n-plectic forms) ([7, Ex. 8.1]) Let G be a Lie
group acting on an n-plectic manifold (M,ω). Assume ω = dα, and that α is
G-invariant. Then {fk} : g→ L∞(M,ω) given by

fk : g⊗k → Ωn−k(M) 1 ≤ k ≤ n

fk(x1, ..., xk) = (−1)k−1ζ(k)ι(vx1 ∧ · · · ∧ vxk)α (3.18)

is a homotopy moment map for the action of G.

A special case of the above is the following example:

Example 3.4.5. ([7, Ex. 8.4]) Consider SO(n) acting on the (n− 1)-plectic
manifold (Rn, ω) where ω = dx1 ∧ dx2 ∧ ... ∧ dxn is a volume form. Then the
following form is an SO(n)-invariant primitive of ω:

α = 1
n

n∑
k=1

(−1)k+1xkdx1...d̂xk...dxn.

Let {eij : 1 ≤ i < j ≤ n} be the basis of so(n), where eij is the matrix that
has -1 on position (i, j), 1 on position (j, i), and zeroes everywhere else. The
corresponding fundamental vector fields are then given by

veij = xj
∂

∂xi
− xi

∂

∂xj
,

and the moment map can be calculated by the formulae (3.18) on the basis
elements and extended multilinearly to all of ∧kg for 1 ≤ k ≤ n.
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3.4.2.1 Multisymplectic coadjoint orbits

We consider the 2-plectic manifolds introduced in §3.3.1.1, with the cocycle
c given by c = dgb, where b ∈ ∧2g∗ ⊗ h is an invariant 2-form in the sense of
Definition 3.3.9.

Namely, consider ρ a representation ρ : g→ gl(h) of a Lie algebra g, the induced
representation of g on the dual h∗, and the action of G, the simply-connected
Lie group integrating g, on h∗. Consider a 3-form on an orbit σξ of ξ ∈ h∗ under
the latter action, given by

ωξ(vx, vy, vz) := ξ(dgb(x, y, z)), (3.19)

where the vx, vy, vz are the fundamental vector fields corresponding to x, y, z
respectively.

Let b ∈ ∧2g∗ ⊗ h be invariant, and assume that it satisfies

gξ ⊂ ker(ξ ◦ b) (3.20)

at ξ.

The next lemma shows that if the condition (3.20) is satisfied at ξ, then it is
satisfied at all points of σξ.

Lemma 3.4.6. If gξ ⊆ ker(ξ ◦ b), then ggξ ⊆ ker(gξ ◦ b) for all g ∈ G

Proof. Analogously to the proof of Proposition 3.3.10, note that ggξ = Adggξ.
Suppose x ∈ ker(ξ ◦ b), we need to show that Adgx ∈ ker(gξ ◦ b). For all y ∈ g,
we have (gξ ◦ b)(Adgx, y) = ξ(g−1(b(Adgx, y))) = ξ(b(Adg−1Adgx,Adg−1y)), by
the invariance of b.

This condition will be needed for certain forms to be well-defined. The next
lemma shows that if this condition is satisfied for an invariant b, then it is also
satisfied for the 3-cocycle dgb obtained from b. Moreover, this 3-cocycle is also
invariant.

Lemma 3.4.7. Let b ∈ ∧2g∗ ⊗ h be invariant, and assume that it satisfies

ggξ ⊂ ker(gξ ◦ b) (3.21)

at gξ. Then dgb satisfies condition (3.9) at gξ. Furthermore, dgb is invariant.
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Proof. We show that if ggξ ∈ ker(gξ ◦ b), then ggξ ∈ ker(gξ ◦ dgb). Let x ∈
ggξ ∩ ker(gξ ◦ b). Writing out dgb(x, y, x) we get

(dgb)(x, y, z) = ρ(x)b(y, z)− ρ(y)b(x, z) + ρ(z)b(x, y)

− b([x, y], z) + b([x, z], y)− b([y, z], x).

Using the invariance of b, we have ρ(x)b(y, z) = b([x, y], z) + b(y, [x, z]), and
similarly for the other two terms in the first line. Hence,

(dgb)(x, y, z) = b([x, y], z)− b([x, z], y) + b([y, z], x) (3.22)

or equivalently, using the invariance of b again,

(dgb)(x, y, z) = ρ(x)b(y, z)− b([z, y], x) (3.23)

Using equation 3.23, we obtain

(gξ ◦ dgb)(x, y, z) = gξ(ρ(x)b(y, z))− gξ(b([z, y], x)) = 0,

because x ∈ ggξ and x ∈ ker(gξ ◦ β). Thus, x ∈ ker(gξ ◦ dgb).

To prove invariance, we have to show

ρ(u)((dgb)(x, y, z)) = (dgb)(adux, y, z) + (dgb)(x, aduy, z) + (dgb)(x, y, aduz)
(3.24)

Using (3.22) and invariance of b, the left-hand side of (3.24) becomes:

ρ(u)((dgb)(x, y, z)) = ρ(u)(b([x, y], z)− b([x, z], y) + b([y, z], x)) (3.25)

= b(adu[x, y], z) + b([x, y], aduz)− b(adu[x, z], y)

− b([x, z], aduy) + b(adu[y, z], x) + b([y, z], adux).

The right-hand side of (3.24), using (3.22), becomes

(dgb)(adux, y, z) + (dgb)(x, aduy, z) + (dgb)(x, y, aduz) = (3.26)

b([adux, y]z)− b([adux, z], y) + b([y, z], adux)

+b([x, aduy], z)− b([x, z], aduy) + b([aduy, z], x)

+b([x, y], aduz)− b([x, aduz], y) + b([y, aduz], x).

Subtracting the right-hand side of (3.26) from the right-hand side of (3.25)
gives 0, due to bilinearity of b and the Jacobi identity.
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Let b ∈ ∧2g∗ ⊗ h be G-invariant and let it satisfy condition (3.20). Consider
the expression

βξ(vx, vy) := ξ(b(x, y)) (3.27)

Then β is a well-defined 2-form on σξ, by Lemma 3.4.6. The next lemma shows
that it is also G-invariant, with the proof being completely analogous to the
proof of Proposition 3.3.13:

Lemma 3.4.8. Let b ∈ ∧2g∗ ⊗ h be G-invariant, and let β be defined as in
(3.27). Then β is invariant under the G-action on σξ.

Then c := dgb is invariant and satisfies condition (3.9) by Lemma 3.4.7. Thus
formula (3.7) defines a closed, invariant 3-form ω on σξ, by Proposition 3.3.11
and Proposition 3.3.13. The following proposition shows that ω is de Rham-
exact, and has β as its primitive.

Proposition 3.4.9. Let b ∈ ∧2g∗ ⊗ h be invariant, and let c := dgb. Define a
2-form β on σξ by

βξ(vx, vy) := ξ(b(x, y)).

and consider ω defined by

ωξ(vx, vy, vx) := (ξ ◦ dgb)(x, y, z).

Then dβ = ω.

Proof. The proof is very similar to the proof of Proposition 3.3.11.

(dβ)ξ(vx, vy, vz) = (vx · β(vy, vz))ξ − (vy · β(vx, vz))ξ + (vz · β(vx, vy))ξ

− βξ([vx, vy], vz) + βξ([vx, vz], vy)− βξ([vy, vz], vx) =

= ξ(ρ(x) · b(y, z))− ξ(ρ(y) · b(x, z)) + ξ(ρ(z) · b(x, y))

− ξ(b([x, y], z)) + ξ(b([x, z], y))− ξ(b([y, z], x)) =

= (ξ ◦ dgb)(x, y, z)

= (ωξ)(vx, vy, vz)

Hence, ω has a G-invariant primitive, and Example 3.4.4 tells us that there
exists a homotopy moment map for the action of G on (σξ, ω):
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Proposition 3.4.10. The G-action on (σξ, ω) admits an equivariant homotopy
moment map given by

f1 : g→ Ω1
Ham(σξ), x 7→ ιvxβ

f2 : ∧2g→ C∞(σξ), x ∧ y 7→ −ιvy ιvxβ

We finish by noting that examples 3.3.16, 3.3.17, 3.3.18 satisfy the condition
3.20 for β = Id∧2g, and therefore they all possess a homotopy moment map.

3.4.3 Existence and obstruction

In this subsection, we present results relating existence of homotopy moment
maps g → L∞(M,ω) to certain class in Lie algebra cohomology of g. The
exposition in this subsection closely follows [7, §9].

Let (M,ω) be an n-plectic manifold, and let G be a Lie group that acts on
(M,ω), and let this action preserve ω. Consider the map cgp : ∧n+1g→ R given
by

cgp : ∧n+1g→ R (3.28)

x1 ∧ ... ∧ xn+1 7→ (−1)nζ(n+ 1)ι(v1 ∧ ... ∧ vn+1)ω|p,
where p ∈M , and vi is the fundamental vector field corresponding to xi, and
ζ(n+ 1) = −(−1)

(n+1)(n+2)
2 .

Lemma 3.4.11. For all p ∈M , the map cgp : ∧n+1g→ R defined in (3.28) is a
cocycle in the Chevalley-Eilenberg complex CE(g) of g with values in the trivial
representation R.

Proof. Computing dgcgp gives:

dgc
g
p(x1, ..., xn+2) =

∑
i<j

(−1)i+jcgp([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xn+2)

= ζ(n+ 1)
∑
i<j

(−1)n+i+jι([vi, vj ] ∧ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vn+2)ω|p.

By Lemma 3.3.26, taking into account that the action preserves ω,

ζ(n+ 1)
∑
i<j

(−1)n+i+jι([vi, vj ] ∧ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vn+2)ω|p =

ζ(n+ 1)(−1)2n+2d(ι(v1 ∧ · · · ∧ vn+2)ω)|p = 0,
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where the last equality holds because ω ∈ Ωn+1(M).

Thus, cgp defines a class [cgp] in Lie algebra cohomology of g. It can be shown
that, if M is connected, this class does not depend on the choice of p ∈M (see
[7, Cor. 9.3]).

The following proposition shows that this class is an obstruction to the existence
of a homotopy moment map:

Proposition 3.4.12. ([7, Prop. 9.5]) Let (M,ω) be a connected n-plectic
manifold, and let G be a Lie group acting on (M,ω). If this action admits a
homotopy moment map, then [cgp] = 0.

Proof. Let (fk) be a moment map for this action. Consider a map b : ∧ng→ R
defined by

b(x1, ..., xn) = (−1)n+1fn(x1, ..., xn)|p
for a fixed p ∈M . By (3.16), we have

cgp(x1, ..., xn+1) =
∑

1≤i<j≤n+1
(−1)i+jb([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xn+1),

i.e., cgp = dgb.

Under some conditions on the de Rham cohomology of M , we also have the
converse:

Theorem 3.4.13. [7, Thm. 9.6] Let (M,ω) be a connected n-plectic manifold,
and let G be a Lie group acting on (M,ω) the induced Lie algebra action of
which is by Hamiltonian vector fields. Let φ : g→ Ωn−1

Ham(M) be a linear map
that satisfies

d(φ(x)) = −ιvxω,

for all x ∈ g. If [cgp] = 0 for cgp defined in (3.28), and Hi(M) = 0 for
1 ≤ i ≤ n− 1, then there exists a homotopy moment map (fk) : g→ L∞(M,ω)
such that f1 = φ.

Proof. We will give a sketch of the proof. For details we refer the reader to the
proof of [7, Thm. 9.6]. The first step of the proof is to show that, if, for every
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2 ≤ k ≤ n+ 1, a map fk−1 : g⊗(k−1) → Ωn−k+1(M) satisfies the equation5∑
1≤i<j≤k−1

(−1)i+j+1fk−2([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xk−1) = d(fk−1(x1, ..., xk−1))

+ ζ(k − 1)ι(vx1 ∧ ... ∧ vxk−1)ω,

then the following expression is a closed (n+ 1− k)-form for all x1, ..., x2 ∈ g:∑
1≤i<j≤k

(−1)i+j+1fk−1([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xk)− ζ(k)ι(vx1 ∧ ... ∧ vxk)ω.

The proof of this fact uses Lemma 3.3.26. Then, using induction on k and the
assumption that Hi(M) = 0 for 1 ≤ i ≤ n− 1, it follows that there exist (fk)
satisfying equations (3.15) for 2 ≤ k ≤ n.

The fn constructed this way will not necessarily satisfy (3.16). However, consider

h(x1, ..., xn+1) =−
∑

1≤i<j≤n+1
(−1)i+j+1fn([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xn+1)

+ ζ(n+ 1)ι(vx1 ∧ ... ∧ vxn+1)ω.

Fix p ∈M and evaluate both summands on the right-hand side of the above
expression at p. Note that the first summand then becomes dgfn|p, and
the second one is (−1)ncgp, which is dg-exact by assumption of the theorem.
Therefore, h|p is dg-exact, i.e., h|p = dgb for some b ∈ ∧ng∗. However, by the
result we established in the beginning of the proof, h(x1, ..., xn+1) is a closed
0-form for all x1, ..., xn+1 ∈ g, i.e., a constant function, since M is connected.
Therefore, h = dgb ∈ ∧n+1g∗. Then, f1, ..., fn−1, fn − b are the components of
a homotopy moment map.

We will see in the next section, that the assumption on the cohomology of M
can be weakened: only certain components of H•CE(g)⊗H•(M) have to vanish
for a homotopy moment map to exist.

3.4.3.1 Moment maps and central n-extensions

The following construction is the higher analogue of the one in 2.4.3.3.

Proposition 3.4.14. [7, Prop. 9.10] Let (M,ω) be a connected n-plectic
manifold, and let G be a Lie group acting on (M,ω) the induced Lie algebra

5Note that this is the equation (3.15) for k − 1.
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action of which is by Hamiltonian vector fields g → XHam(M). Assume that
Hi(M) = 0 for 1 ≤ i ≤ n−1. Let p ∈M , and let ḡc be the central extension of g
corresponding to the cocycle cgp defined in (3.28). There exists an L∞-morphism

f̄ : ḡc → L∞(M,ω)

such that for all x ∈ g

d(f̄1(x)) = −ιvxω,
where vx is the fundamental vector field associated to x.

Proof. Using Definition 3.2.20 and Theorem 3.3.29, we can see that ([7, Prop.
A.9]) an L∞-morphism f̄ : ḡc → L∞(M) is a collection of n skew-symmetric
maps of degree 1− k

f̄1 : g→ Ωn−1
Ham(M), f̄1 : R→ C∞(M)

f̄k : g⊗k → L∞(M,ω) 2 ≤ k ≤ n

satisfying the following equations:

d(f̄1(r)) = 0 for all r ∈ R

∑
1≤i<j≤k

(−1)i+j+1f̄k−1([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xk) = d(f̄k(x1, ..., xk))

+ ζ(k)ι(vx1 ∧ ... ∧ vxk)ω
(3.29)

for 2 ≤ k ≤ n and∑
1≤i<j≤n+1

(−1)i+j+1f̄n([xi, xj ], x1, ..., x̂i, ..., x̂j , ...,xn+1) + f̄1(c(x1, ..., xn+1))

= ζ(n+ 1)ι(vx1 ∧ ... ∧ vxn+1)ω,
(3.30)

for all xi ∈ g.

We define f̄1 by f̄1(x) = α, f̄1(r) = (−1)nr for x ∈ g, r ∈ R, and where
α ∈ Ωn−1

Ham is a Hamiltonian n− 1 form whose Hamiltonian vector field is vx.
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We proceed further as in the proof6 of Theorem 3.4.13, and obtain maps f̄k for
2 ≤ k ≤ n that satisfy equation (3.29).

Finally, consider the map b : ∧ng→ R defined by

b(x1, ..., xn) := f̄n(x1, ..., xn)|p,

and define
f̄ ′n := f̄n − b.

It is clear that f̄ ′n satisfies the equation (3.29), since b(x1, ..., xn) is a constant
function for all xi ∈ g. Using Lemma 3.3.26 and the fact that f̄ ′n satisfies the
equation (3.29), i.e.,

∑
1≤i<j≤k

(−1)i+j+1f̄n−1([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xn) = d(f̄ ′n(x1, ..., xn))

+ ζ(n)ι(vx1 ∧ ... ∧ vxn)ω

we conclude that the function

F :=
∑

1≤i<j≤n+1
(−1)i+j+1f̄ ′n([xi, xj ], x1, ..., x̂i, ..., x̂j , ...,xn+1) + (−1)ncgp(x1, ..., xn+1)

− ζ(n+ 1)ι(vx1 ∧ ... ∧ vxn+1)ω,

is closed for all xi ∈ g. Therefore,

F = F (p) = (−1)ncgp(x1, ..., xn+1)− ζ(n+ 1)ι(vx1 ∧ ... ∧ vxn+1)ω|p = 0.

Thus, f̄ ′ satisfies equation (3.30), and f̄ = (f̄1, ..., f̄
′) is the required morphism.

Example 3.4.15. ([7, Ex. 9.11]) (Heisenberg n-algebra) We saw in Example
2.2.40 that the Heisenberg Lie algebra h with the following commutator relations
between the basis elements

[x, y] = z, [x, z] = 0, [y, z] = 0

is a central extension h = R2 ⊕ R of the abelian Lie algebra R2 corresponding
to the cocycle given by the canonical symplectic form ω on R2. We also saw

6Note the similarity between the equations (3.29) and the equations (3.15) for homotopy
moment maps.
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in Example 2.4.22 that the action of R2 on itself by translations does not
admit a moment map. However, by results of §2.4.3.3, there is a Lie algebra
homomorphism µ̄∗ : h→ C∞(M) such that d(µ̄∗(x, r)) = −ιvxω for all x ∈ R2,
i.e., a comoment map for the action of h.

The following example generalizes this to arbitrary vector spaces. Namely, let
V be a real finite-dimensional vector space, and let ω ∈ ∧n+1V ∗ be a nonzero
multilinear n + 1-form on V . If we consider V as a manifold, ω induces a
differential n + 1-form by translation along V , which we also denote by ω.
Such a form is then closed and invariant under translations of V by itself
considered as an abelian Lie group. Since V is a vector space, and therefore is
simply-connected, the induced action of g = V is by Hamiltonian vector fields.
However, since V is abelian, the co-cycle cgp defined by ω can only be exact if
it vanishes. Since we chose ω to be nonzero, the class [cgp] corresponding to ω
does not vanish, and the action does not admit a homotopy moment map.

However, by Proposition 3.4.14, there is an L∞-morphism {f̄k} between the
central n-extension V̄c of V corresponding to the co-cycle cgp and L∞(M,ω),
such that d(f̄1(x)) = −ιvxω for all x ∈ V .
Example 3.4.16. ([7, 9.12]) Let G be a connected compact simple group,
and ω = 〈θL, [θL, θL]〉 as in Example 3.3.8. Then ω is invariant under (left)
translations of G, but the class [cgp] does not vanish. The central 2-extension of
g corresponding to cgp is called the string Lie 2-algebra and denoted string(g).
By Proposition 3.4.14, there is an L∞-morphism {f̄k}, 1 ≤ k ≤ 3, between
string(g) and L∞(M,ω), such that d(f̄1(x)) = −ιvxω for all x ∈ g.

3.4.4 Characterization of homotopy moment maps in terms
of a double complex

In this subsection it will be demonstrated that homotopy moment maps g→
L∞(M) correspond to primitives of a certain element in a certain double complex
that combines the Lie algebra cohomology of g and the de Rham cohomology
of M . This subsection closely follows [18] and [53].

Let G be a Lie group acting on an n-plectic manifold (M,ω) by preserving ω,
and let g be its Lie algebra. Consider the double complex

(∧≥1g∗ ⊗ Ω(M), dg, d), (3.31)

where dg is the Chevalley-Eilenberg differential of g and d is the de Rham
differential of M . We will denote the total complex of this double complex by
(C, dtot), where

dtot := dg ⊗ 1 + 1⊗ d. (3.32)
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Since we are using the Koszul sign convention, for f ∈ ∧kg∗ ⊗ Ωl(M) we have

dtotf = dgf + (−1)kdf,

with dgf ∈ ∧k+1g∗ ⊗ Ωl(M) and df ∈ ∧kg∗ ⊗ Ωl+1(M) evaluated on elements
of ∧≥1g∗ in the following way:

dgf(x1, ..., xk+1) = f(δk+1(x1, ..., xk+1))

df(x1, ..., xk) = d(f(x1, ..., xk)),

where δk+1 is the (k+ 1)-st Lie algebra homology differential (Definition 2.2.35).

Define ωk : ∧kg→ Ωn+1−k by

ωk : ∧kg→ Ωn+1−k

(x1, ..., xk) 7→ ι(vx1 ∧ ... ∧ vxk)ω, (3.33)

where vxi is the fundamental vector field corresponding to xi ∈ g.

Consider an element ω̃ ∈ C defined by

ω̃ :=
n+1∑
k=1

(−1)k−1ωk. (3.34)

We then have the following:

Lemma 3.4.17. ω̃ is closed, i.e., dtotω̃ = 0.

Proof. dtotω =
n+1∑
k=1

(−1)k−1(dg + (−1)kd)ωk. By Lemma 3.3.26,

(−1)kdωk = dgωk−1,

or equivalently,

(−1)k−1dgωk = (−1)k−1(−1)k+1dωk+1 = dωk+1.

Thus,
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dtotω =
n+1∑
k=1

(−1)k−1(dg + (−1)kd)ωk =
n+1∑
k=1

dωk+1 + (−1)2k−1dωk

=
n+1∑
k=1

dωk+1 − dωk = dωn+2 − dω1

= 0,

since ωn+2 = 0, because ω ∈ Ωn+1(M), and (dω1)(x) = d(ω1(x))=dιvxω = 0,
since vx are multisymplectic vector fields (see Lemma 3.3.21).

Note that if {fk} : g → L∞(M) is a moment map, then its components are
graded skew-symmetric maps fk : g⊗k → Ωn−k(M), i.e., fk ∈ ∧kg∗ ⊗ Ωn−k(M)
so homotopy moment maps are elements of C. It turns out that they correspond
to primitives of ω̃, as we will see below.

3.4.4.1 Existence and uniqueness

The following proposition establishes a bijective correspondence between
homotopy moment maps for the action of G on (M,ω) and primitives of ω̃ in
(C, dtot).

Proposition 3.4.18. ([18, Prop. 2.5]) Let φ = φ1 + ... + φn, where φk ∈
∧kg∗ ⊗ Ωn−k(M). Then dtotφ = ω̃ if and only if

fk := ζ(k)φk : ∧kg→ Ωn−k(M),

for k = 1, ..., n are the components of a homotopy moment map for the action
of G on (M,ω).

Proof. Writing down the components of dtotφ and comparing them with the
components of ω̃ that live in the same space, we get that dtotφ = ω̃ if and only
if:

−dφ1 = ω1

dgφk−1 + (−1)kdφk = (−1)k−1ωk ∀2 ≤ k ≤ n

dgφn = (−1)nωn+1.
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Evaluating the equations above on x1, ..., xi ∈ g for i = 1, ..., n+ 1, we obtain
for 2 ≤ k ≤ n

d(φ1(x)) = −ιvxω∑
1≤i<j≤k

(−1)i+jφk−1([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xk) = −(−1)kd(φk(vx1 , ..., vxk))

+ (−1)k−1ι(vx1 ∧ ... ∧ vxk)ω∑
1≤i<j≤n+1

(−1)i+jφn([xi, xj ], x1, ..., x̂i, ..., x̂j , ..., xn+1) = (−1)nι(vx1 ∧ ... ∧ vxn+1)ω

The first of the equations above is the first equation in the definition of the
homotopy moment map. Multiplying the second equation above by −ζ(k−1) =
−(−1)kζ(k) gives equation (3.15), and multiplying the third of the above
equations by −ζ(n) = −(−1)n+1ζ(n+ 1) gives equation (3.16).

Remark 3.4.19. Note that it follows from Proposition 3.4.18 that the set of
homotopy moment maps g→ L∞(M,ω) is an affine space.

Thus, by Proposition (3.4.18), homotopy moment map for the given action of g
on M exists if and only if ω̃ is dtot-exact. It also follows from this that if f is a
homotopy moment map for the given action, f ′ is another homotopy moment
map for the same action if and only if f ′ = f + ξ, where ξ ∈ C is such that
dtotξ = 0, which answers the question of uniqueness:

Corollary 3.4.20. Two moment maps for an action of G on (M,ω) differ by
a closed element of (C, dtot).

The following example shows that applying the above results to symplectic
manifolds recovers the familiar results from symplectic geometry:

Example 3.4.21. Let n = 1, i.e., consider the case of symplectic geometry.
Consider the action of a Lie group G on a symplectic manifold (M,ω). Then,
by Proposition 3.4.18, we get that f : g→ C∞(M) is a homotopy moment map
for this action if and only if dtotf = ω̃, which translates to

−df = ω1

dgf = −ω2
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or, evaluating on x, y ∈ g,

d(f(x)) = −ιvxω

f([x, y]) = ω(vx, vy),

which are precisely the conditions in the definition 2.4.5 of a symplectic moment
map.

Two such homotopy moment maps differ by an element ξ : g→ C∞(M) such
that dtotξ = 0, i.e.,

dξ = 0

dgξ = 0.

If M is a connected manifold, then the first equation above means that ξ ∈ g∗,
and the second equation means that ξ ∈ [g, g]◦, i.e., we obtain the statement of
Proposition 2.4.14.



Chapter 4

Weak homotopy moment
maps vs. homotopy moment
maps

In this chapter we compare two notions of moment maps in n-plectic geometry.
The material of this chapter is based on a preprint ([43]) co-authored by the
author of the thesis, with similar wording in many places.

4.1 Introduction

In §3.4.1 we mentioned a few generalizations of the symplectic moment map to
multisymplectic geometry. One of them was the multi-moment map of Madsen
and Swann (see [41] and [42]) defined as an equivariant map f : M → P ∗n,g
such that df∗(p) = ιvpω, where (M,ω) is an n-plectic manifold equipped with
an ω-preserving action of a Lie group G, vp is the fundamental vector field
corresponding to p ∈ Pn,g, and f∗ : Pn,g → C∞(M) is the map defined by
f∗(p)|m = f(m)(p).

In this section we turn our attention to a generalization of the multimoment
map1 introduced by J. Herman in [30] and [29]. In [30] this map is used to
generalize Noether’s theorem (2.4.1) to n-plectic geometry.

1Or, rather, its dual.

95
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In particular, it was shown in [55] that components of a homotopy moment
map restricted to the Lie kernel give rise to conserved quantities, just like in
symplectic geometry (c.f. Theorem 2.4.1). Furthermore, the equation (3.16)
was not used in the derivation of these results. This suggests considering a map
defined in the following way:
Definition 4.1.1. Let g → X(M), x 7→ vx be a Lie algebra action on an n-
plectic manifold (M,ω) by Hamiltonian vector fields. A weak (homotopy)
moment map is a collection of linear maps f̂k : Pk,g → Ωn−k(M), where
1 ≤ k ≤ n, satisfying

d(f̂k(p)) = −ζ(k)ιvpω
for k ∈ 1, ..., n and all p ∈ Pk,g, where Pk,g is the k-th Lie kernel of g, and ζ(k)
is as defined in (3.1).

Recall that the Lie kernel was defined in 2.2.36.
Remark 4.1.2. Looking at equations (3.17) for homotopy moment maps, we
see that any homotopy moment map restricts to a weak moment map. However,
note that there are n equations in the definition of a weak moment map, while a
homotopy moment map has to obey n+ 1 equations. Namely, it’s the equation
(3.16) that the weak moment map is not required to satisfy.

Note that when n = 1, Definition 4.1.1 gives the weak comoment map from
Definition 2.4.8.

In [30] J. Herman uses the weak moment map to extend the results of [55] and
draw further parallels with symplectic geometry.

Before proceeding further, we establish that in this chapter we assume the
following set-up:

(M,ω) is an n-plectic manifold,
Lie group G (or Lie algebra g) acts on (M,ω), and this action preserves ω.

We also recall the following result from algebraic topology that will be of great
importance in what follows. We refer the reader to [24] for a detailed treatment.

Theorem 4.1.3 (H. Künneth). Let X and Y be cochain complexes of vector
spaces. Then for every n ∈ N, there is an isomorphism

κ : Hn(X ⊗ Y )→
⊕
k

Hk(X)⊗H(n−k)(Y ).
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Remark 4.1.4. Note that there is an explicit expression for the inverse map
κ−1 given by κ−1([α]⊗ [β]) = ([α⊗ β]), for [α] ∈ Hk(X) and [β] ∈ H(n−k)(Y ).

4.2 Existence in terms of a double complex

In this subsection we formulate an existence criterion for weak moment maps
that is analogous to Proposition 3.4.18.

We first need the following lemma which also explains why the Lie kernel is
considered as the domain of weak moment maps: there is no way for the form
ιvxω to be exact if it is not closed, and the closedness is guaranteed only for vp
such that p is in the Lie kernel, as demonstrated by the following Lemma.
Lemma 4.2.1. ([41, Lemma 2.4]) Let G act on an n-plectic manifold (M,ω),
and let this action preserve ω. For p ∈ Pk,g, k = 1, ..., n+ 1, the form ιvpω is
closed, i.e.,

dιvpω = 0.

Proof. For k = 1, we have P1,g = g, and we need to show that dιvxω = 0 for all
x ∈ g. This follows from Cartan’s magic formula:

£vxω = dιvxω + ιvxdω = dιvxω,

since ω is closed, and £vxω = 0.

For k ≥ 2, consider p =
∑
xi1 ∧ xi2 ∧ · · · ∧ xik ∈ Pk,g. By Lemma 3.3.26,

dι(vxi1 ∧ ... ∧ vxik )ω =

(−1)k
∑

1≤l<m≤k
(−1)i+jι([vxil , vxim ] ∧ vxi1 ∧ ... ∧ v̂xil ∧ ... ∧ v̂xim ∧ ... ∧ vxik )ω,

because ω is closed, and the action of G acts preserves ω. Then, by linearity,
for p =

∑
xi1 ∧ xi2 ∧ · · · ∧ xik we have

dιvpω =
∑

dι(vxi1 ∧ ... ∧ vxik )ω

=
∑

(−1)k
∑

1≤l<m≤k
(−1)i+jι([vxil , vxim ] ∧ vxi1 ∧ ... ∧ v̂xil ∧ ... ∧ v̂xim ∧ ... ∧ vxik )ω

= (−1)kι(vδkp)ω = 0,
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since p ∈ Pk,g and therefore δkp = 0.

Remark 4.2.2. Note that when n = 1 we obtain Lemma 2.3.10.

From the above lemma we conclude that ιvpω for p ∈ Pk,g defines a class in the
de Rham cohomology of M , so the maps p 7→ ιvpω induce well-defined maps
Pk,g → Hn+1−k(M), and we can state the following lemma:

Lemma 4.2.3. A weak moment map exists if and only if the maps

Pk,g → Hn+1−k(M)

p 7→ [ιvpω]

are identically zero for 1 ≤ k ≤ n.

Proof. By definition of weak moment maps, for all p ∈ Pk,g and all k, the form
ιvpω has to be exact.

We can now state the result analogous to that of Proposition 3.4.18. Define
P≥1,g :=

⊕dimg
k=1 Pk,g, and consider the double complex

(P ∗≥1,g ⊗ Ω(M), 0, d) (4.1)

with the zero differential on P ∗≥1,g and the de Rham differential on M .

Let Ĉ be the total complex of this double complex with the differential

d̂tot := 1⊗ d (4.2)

Define ω̂ ∈ Ĉ as

ω̂ :=
n∑
k=1

(−1)k−1(ωk|Pk,g), (4.3)

where the ωk are as defined in (3.33), i.e.,

ωk : ∧kg→ Ωn+1−k

(x1, ..., xk) 7→ ι(vx1 ∧ ... ∧ vxk)ω,

where vxi is the fundamental vector field corresponding to xi ∈ g.

We then have the following:
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Proposition 4.2.4. Let α̂ := α̂1 + ...+ α̂n, with α̂k ∈ P ∗k,g ⊗ Ωn−k(M). Then
d̂totα̂ = ω̂ if and only if

f̂k := ζ(k)α̂k : Pk,g → Ωn−k(M), k = 1, ..., n

are the components of a weak moment map for the action of G on (M,ω).
I.e., the existence of a weak moment map is equivalent to the vanishing of
[ω̂] ∈ Hn+1(Ĉ).

Proof. The proof follows from Definition 4.1.1.

4.3 Relation to homotopy moment map

By Remark 4.1.2, every homotopy moment map induces a weak moment map
by restriction to the Lie kernel, i.e., if there is a homotopy moment map for a
given Lie algebra action, there is also a weak moment map. A natural question
to ask is, what about the converse implication? I.e., if a given group action
on an n-plectic manifold admits a weak moment map, does it also admit a
homotopy moment map?

The example of symplectic geometry already shows that the answer to the above
question is negative. Indeed, in symplectic geometry, a weak moment map for a
given action exists if the action is by Hamiltonian vector fields. However, as
we saw in Example 2.4.22 and Example 2.4.24, such an action does not always
admit a homotopy moment map.

Nonetheless, we will see in this section that adding a certain condition necessary
for the existence of a homotopy moment map resolves the problem.

First we establish the following simple, but important result.

Lemma 4.3.1. If there exists a homotopy moment map for g acting on (M,ω),
then the map

φ : Pn+1,g → C∞(M)

p 7→ ιvpω

vanishes identically.

Proof. If there exists a homotopy moment map f for the action of g on (M,ω),
then it has to satisfy equation (3.16)

−f̃n(δp) = ζ(n+ 1)ιvpω
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for all p ∈ Λn+1g. This means that for p ∈ Pn+1,g, we have ιvpω = 0.

Recall the double complex (∧≥1g∗ ⊗ Ω(M), dg, d) introduced in see (3.31). In
this chapter we will denote the total complex of this double complex by C̃ and
its total differential by d̃tot. Remember that, by Proposition 3.4.18, a homotopy
moment map for the action of g on (M,ω) exists if and only if the class [ω̃] = 0
in Hn+1(C̃) for ω̃ defined in (3.34).

By the Künneth theorem, Hn+1(C̃) =
⊕n+1

i=1 H
i(g)⊗Hn+1−i(M), where Hi(g)

are the Lie algebra cohomology groups andHn+1−i(M) the de Rham cohomology
groups. In particular, the class [ω̃] can be decomposed into components in
Hi(g)⊗Hn+1−i(M). It turns out that φ defined in Lemma 4.3.1 describes the
component of [ω̃] in Hn+1(g)⊗H0(M).

To see this, recall the following map from (3.28):

cgm : Λn+1g→ R, p 7→ (−1)nζ(n+ 1)ιvpω|m, (4.4)
for some m ∈M . Recall from Lemma 3.4.11 that this map is a (n+ 1)-cocycle
in the Chevalley-Eilenberg complex of g with values in R, and, by [7, Cor. 9.3],
if M is connected, the cohomology class [cgm] ∈ Hn+1(g) does not depend on
the point m ∈ M . Moreover, by Proposition 3.4.12, if a connected n-plectic
manifold (M,ω) is equipped with a G-action which induces a homotopy moment
map, then

[cgm] = 0.
Up to sign, the class [cgm] can be interpreted as the evaluation at m of the
Hn+1(g)⊗H0(M) component of [ω̃].

We have the following lemma:

Lemma 4.3.2. Let (M,ω) be a connected n-plectic manifold equipped with a
G-action preserving ω. Let cgm be defined as in equation (4.4), and φ be defined
as in Lemma 4.3.1. Then the condition

[cgm] = 0 ∈ Hn+1(g)

is equivalent to φ ≡ 0.

Proof. Indeed, assume φ ≡ 0. Then, for p ∈ Pn+1,g

cgm(p) = (−1)nζ(n+ 1)(ιvpω)|m = 0

for any p ∈ M . That means that cgm ∈ (Pn+1,g)◦, where (Pn+1,g)◦ is the
annihilator of Pn+1,g. Therefore cgm ∈ (Pn+1,g)◦ = (ker δn+1)◦ = imdng , i.e.,
[cgm] = 0. Note that we have used that:
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• dng : ∧ng∗ → ∧n+1g∗ is dual to δn+1 : ∧n+1g→ ∧ng and

• the linear algebra fact that the annihilator of the kernel of a linear map is
the image of the dual map.

Conversely, suppose [cgm] = 0. Since M is connected, this holds at all m ∈M .
Then cgm = dgξ for some ξ ∈ Λng∗. For any p ∈ Pn+1,g and m ∈M this means

ιvpω|m = (−1)nζ(n+ 1)cgm(p) = (−1)nζ(n+ 1)(dgξ)(p) = (−1)nζ(n+ 1)ξ(δp) = 0.

We can now state the central result of this chapter:

Theorem 4.3.3. Let (M,ω) be an n-plectic manifold, and let g act on (M,ω)
by preserving ω. The following statements are equivalent:

1. The action of g on (M,ω) admits a homotopy moment map

2. The action of g on (M,ω) admits a weak moment map and φ ∈ P ∗n+1,g ⊗
C∞(M) as defined in Lemma 4.3.1 vanishes identically.

Proof. The implication (1)→ (2) is an immediate consequence of the fact that
any homotopy moment map restricts to a weak moment map and Lemma 4.3.1.
To prove the converse, we first observe that ω̃|P≥1,g = ω̂ + φ. In other words,
the restriction

(res⊗ id) : C̃ = Λ≥1g∗ ⊗ Ω(M)→ P ∗≥1,g ⊗ Ω(M) = Ĉ (4.5)

maps ω̃ to ω̂ + φ, where ω̂ is defined by formula (4.3). We claim that this
restriction is a chain map. Indeed, for ξ ⊗ α ∈ ∧kg∗ ⊗ Ωl(M) we have

(res⊗ id)ξ ⊗ α = ξ|Pg
⊗ α,

and therefore

(res⊗ id)(dtot(ξ ⊗ α)) =

(res⊗ id)(dgξ ⊗ α+ (−1)kξ ⊗ dα) =

(dgξ)|Pg
⊗ α+ (−1)kξ|Pg

⊗ dα = 0 + (−1)kξ|Pg
⊗ dα

= d̂tot((res⊗ id)(ξ ⊗ α))
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by definition of Pg, and by definition of d̂tot in (4.2).

Note that by Proposition 4.2.4 and the assumptions of item 2. in the statement
of the Theorem, we have [ω̂ + φ] = [ω̂] = 0 ∈ Hn+1(Ĉ), where ω̂ is defined by
formula (4.3). Therefore, if we can prove that the induced map in cohomology
[res⊗ id] : H(C̃)→ H(Ĉ) is injective, then the preimage [ω̃] of [ω̂] = 0 will also
vanish, and therefore, by 3.4.18, we can conclude that there exists a homotopy
moment map.

To prove injectivity, we first note that the sequence

0→ Pk,g
i−→ ∧kg δk−→ ∧k−1g

and the dual sequence

0← P ∗k,g
π←− ∧kg∗

dk−1
g←−−− ∧k−1g∗

are exact.

Therefore,

P ∗k,g = ∧kg∗/im(dk−1
g )←↩ ker(dkg)/im(dk−1

g ) = Hk(g),

i.e., the following map is injective:

[res]⊗ [id] : Hkg⊗Hn+1−k(M)→ P ∗k,g ⊗Hn+1−k(M)

[ξ]⊗ [α] 7→ ξ|Pg
⊗ [α].

Consider the following diagram:

Hn+1(∧≥1g∗ ⊗ Ω(M)) Hn+1(P ∗≥1,g ⊗ Ω(M))

⊕
k≥1H

kg⊗Hn+1−k(M)
⊕

k≥1 P
∗
k,g ⊗Hn+1−k(M)

[res⊗ id]

κ

[res]⊗ [id]

κ

Here the map κ is the Künneth isomorphism, and the bottom map [res⊗ id] is
the one induced in cohomology from the map (res⊗ id) defined in (4.5). Note
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that, since κ is an isomorphism, and [res]⊗ [id] is injective, the composition
([res]⊗ [id]) ◦ κ is also injective. Thus, if we can show that the diagram above
commutes, it will follow that [res⊗ id] is injective.

Note that the above diagram commuting is equivalent to the following diagram
commuting:

Hn+1(∧≥1g∗ ⊗ Ω(M)) Hn+1(P ∗≥1,g ⊗ Ω(M))

⊕
k≥1H

kg⊗Hn+1−k(M)
⊕

k≥1 P
∗
k,g ⊗Hn+1−k(M)

[res⊗ id]

κ−1

[res]⊗ [id]

κ−1

In other words, we have to check if

κ−1(([res]⊗ [id])([α]⊗ [γ])) = [res⊗ id](κ−1([α]⊗ [γ])), (4.6)

for [α]⊗ [γ] ∈ Hkg⊗Hn+1−k(M).

On the left-hand side of equation (4.6), we have

κ−1(([res]⊗ [id])([α]⊗ [γ])) = κ−1(α|Pk,g ⊗ [γ])

= [α|Pk,g ⊗ γ]

On the right-hand side of equation (4.6), we have:

[res⊗ id](κ−1([α]⊗ [γ])) = [res⊗ id][α⊗ γ]

= [α|Pk,g ⊗ γ],

so both sides of equation (4.6) agree, and therefore diagrams above commute,
and the map [res⊗ id] is injective.
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Proposition 4.2.4 characterized existence of weak moment maps in terms of the
complex Ĉ. The following corollary characterizes existence of weak moment
maps in terms of the complex C̃ that is responsible for existence of homotopy
moment maps.

Corollary 4.3.4. A weak moment exists if and only if the projection of [ω̃] to
n⊕
k=1

Hk(g)⊗Hn−k+1(M)

vanishes.

Proof. Let pki , where i = 1, ..., dim Pk,g, be a basis of Pk,g for k = 1, ..., n.
Then ωk|Pk,g can be written as ωk|Pk,g =

∑
i

(pki )∗ ⊗ ωk(pki ), where (pki )∗ are

members of the dual basis of P ∗k,g. Note that, since each ωk(pki ) is closed by
Lemma 4.2.1, each ωk|Pk,g is also closed under d̂tot = 1⊗ d. Thus, the image of
[ω̂ + φ] ∈ Hn+1(Ĉ) under the Künneth isomorphism κ is

κ([ω̂ + φ]) =
n∑
k=1

(−1)k−1κ[ωk|Pk,g ] + (−1)nκ[φ]

so κ([ω̂ + φ]) can be divided into two parts:

κ([ω̂]) =
n∑
k=1

(−1)k−1κ[ωk|Pk,g ] ∈
n⊕
k=1

Pk,g∗ ⊗Hn−k+1(M)

and
(−1)nκ[φ] ∈ Pn+1,g∗ ⊗H0(M).

By the commutativity of the diagram in the proof of Theorem 4.3.3, we have

[res]⊗ [id](κ[ω̃]) = κ([ω̂]) + (−1)nκ([φ]).

It is then clear from the nature of the map [res]⊗ [id] that the preimage of κ([ω̂])
under [res] ⊗ [id] is the projection of κ([ω̃]) to

⊕n
k=1H

k(g) ⊗ Hn−k+1(M).
Since we showed in the proof of Theorem 4.3.3 that the map [res] ⊗ [id] is
injective, κ([ω̂]) vanishes if and only if that preimage vanishes. Noting that the
Künneth map is an isomorphism, we get the statement of the corollary.
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With this corollary, we can recover the following result from [29]:

Proposition 4.3.5. [29, Prop. 5.12] If H1(g) = ... = Hn(g) = 0, then a weak
moment map exists.

We turn to examples to illustrate Theorem 4.3.3. The first example deals with
the more familiar symplectic case:

Example 4.3.6. Let n = 1, i.e., consider a connected Lie group G acting on a
connected symplectic manifold (M,ω). In this case, a weak moment map is a
map f̂ : g→ C∞(M) that satisfies

d(f̂(x)) = −ιvxω,

and a homotopy moment map is a map f̃ : g→ C∞(M) that satisfies

d(f̃(x)) = −ιvxω

f̃([x, y]) = {f̃(x), f̃(y)} = ω(vx, vy).

In this thesis, we call the latter map simply a moment map. As was stated in
Proposition 2.4.19, if there exists a weak moment map, then the obstruction to
the existence of an equivariant moment map lies in H2(g).

More specifically, let f̂ be a weak moment map2. Consider

h(x, y) : = {f̂(x), f̂(y)} − f̂([x, y])

= ω(vx, vy)− f̂([x, y]).

Since d(ω(vx, vy)) = −ι[vx,vy ]ω = d(f̂([x, y])), it follows that h(x, y) is a constant
function on M , and therefore it defines an element h ∈ ∧2g∗. Evaluating h(x, y)
at any point m ∈M , we get

h(x, y) = ω(vx, vy)|m − f̂ |m([x, y])

= cgm(x, y) + dgf̂(x, y)|m.
2What follows is basically the content of the second half of the proof of Theorem 3.4.13,

adjusted to n = 1.
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If we assume that cgm is exact, then h ∈ ∧2g∗ is exact, i.e., there exists b ∈ g∗

such that h = dgb. Then f̃ := f̂ − b is an equivariant moment map. Indeed,

f̃([x, y])− ω(vx, vy) = f̂([x, y])− b([x, y])− ω(vx, vy)

= f̂([x, y]) + dgb(x, y)− ω(vx, vy)

= f̂([x, y]) + h(x, y)− ω(vx, vy)

= 0

Note that, by Lemma 4.3.2, the exactness of cgm is equivalent to the vanishing
of φ. Thus, if there exists a weak moment map for a Lie group acting on a
symplectic manifold, then there exists a homotopy moment map if and only if
φ ≡ 0, i.e., we recover Theorem 4.3.3 in the special case of n = 1.

Thus, the example above yields many instances in symplectic geometry where a
weak moment map exists, but a homotopy moment map does not (again, see
Example 2.4.22 and Example 2.4.24). The next examples illustrate such cases
in n-plectic geometry.

Example 4.3.7. Let G be a connected compact simple group acting on itself
by multiplication, and ω = 〈θL, [θL, θL]〉 as in Example 3.3.8 and Example
3.4.16. We saw in Example 3.4.16 that ω is invariant under left translations
of G, but the class [cgp] does not vanish, so there is no homotopy moment map
for this action. However, since H1(g) = H2(g) = 0 (see, e.g., [32]), a weak
homotopy moment map exists for this action, by Proposition 4.3.5.

Example 4.3.8. Let V be a real finite-dimensional vector space acting on itself
by translations, and let ω be a closed invariant differential form on V obtained
by translating a nonzero element of ∧n+1V ∗. We saw in Example 3.4.15 that
the cocycle cgp defined by ω doesn’t vanish, and therefore there is no homotopy
moment map for this action. However, since V is a vector space, all Hk(M)
vanish for k ≥ 1, and therefore, by Lemma 4.2.3, this action admits a weak
moment map.

In the next example we will explicitly construct a 2-plectic homotopy moment
map from a weak moment map.

Example 4.3.9. Consider the action of SO(3) on (M = R3, ω = dx1∧dx2∧dx3)
by rotations. Note that, sinceH1(M) = 0, the first component of a weak moment
map for this action exists. The Lie algebra so(3) is spanned by the following
elements:
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e1 =

0 −1 0
1 0 0
0 0 0

 , e2 =

0 0 −1
0 0 0
1 0 0

 , e3 =

0 0 0
0 0 −1
0 1 0

.

These elements satisfy the following bracket relations:

[e1, e2] = e3,[e1, e3] = −e2,[e2, e3] = e1,

therefore, P2,so(3) ≡ 0, , and a weak homotopy moment map for this action
has only one component. It also follows from the above bracket relations that
P3,so(3) = ∧3so(3), which we will need later. Note further, that the orbits
of this action are of dimensions 0 and 2, hence φ ∈ P ∗3,so(3) ⊗ C∞(M) =
∧3so(3)∗ ⊗ C∞(M) defined in Lemma 4.3.1 vanishes. Therefore, by Theorem
4.3.3, there exists a homotopy moment map for this action.

The fundamental vector fields vi corresponding to the elements ei are given by

v1 = x2
∂
∂x1
− x1

∂
∂x2

, v2 = x3
∂
∂x1
− x1

∂
∂x3

, v3 = x3
∂
∂x2
− x2

∂
∂x3

.

Defining

f̂1(e1) = ω(v2, v3), f̂1(e2) = −ω(v1, v3), f̂1(e3) = ω(v1, v2)

on basis elements gives the weak moment map.

Note that f̃ = (f̃1 = f̂1, f̃2 ≡ 0) is a preimage of f̂ under the map (4.5). By
Proposition 4.2.4, d̂tot(f̂) = ω̂. The map (4.5) is a chain map, and thus it maps
d̃tot(f̃) to d̂tot(f̂) = ω̂. Since φ = 0, the image of ω̃ under the map (4.5) is
ω̂, i.e., d̃tot(f̃) and ω̃ have the same image under the map (4.5). Since ω̃ and
d̃tot(f̃) are both d̃tot-closed, so is their difference ψ̃ := ω̃ − d̃totf̃ . The induced
map in cohomology maps the class of ψ̃ in Hn+1(C̃) to the 0 class in Hn+1(Ĉ),
and since we showed that this map is injective, this means that the class of ψ̃ is
0, i.e., ψ̃ is d̃tot-exact. The sum of any primitive of ψ̃ with f̃ gives a primitive
of ω̃, i.e., a homotopy moment map. So, to construct a homotopy moment map,
we need to find a primitive of ψ̃, i.e., find a h̃ = (h1, h2) ∈ C̃2 that satisfies the
following equations:

−dh1 = 0

dgh1 + dh2 = −ω2 − dgf̂1

dgh2 = ω3.
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Note that ω3 = 0. Also, evaluating −ω2 − dgf̂1 on basis elements, we get, using
the definition of f̂1 and bracket relations between the ei,

ω2(ei, ej)−f1([ei, ej ]) = 0.

Therefore the equations above become:

−dh1 = 0

dgh1 + dh2 = 0

dgh2 = 0.

Note that the last equation is satisfied for any h2 ∈ ∧2so(3)∗⊗C∞(M), since for
all x, y, z ∈ g, we have (dgh2)(x, y, z) = h2(δ3(x, y, z)), and P3,so(3) = ∧3so(3).
Therefore, the equations above become:

−dh1 = 0

dgh1 + dh2 = 0.

It is easy to see that a trivial map h1 ≡ 0, h2 ≡ 0 satisfies this equation, and
therefore, f̃ = (f̃1 = f̂1, f̃2 ≡ 0) is a homotopy moment map for this action.

Remark 4.3.10. Note that since in this example Hi(M) = 0 for 1 ≤ i ≤ n− 1,
and [cgm] = 0, the existence of a homotopy moment map is also guaranteed by
Theorem 3.4.13. Moreover, it was stated in Example 3.4.5 that a homotopy
moment map can be constructed for the action of SO(n) on Rn using equations
(3.18). However, the homotopy moment map constructed in the above example
differs from the one constructed from equations (3.18).

4.4 Strict extensions

By Theorem 4.3.3, assuming φ ≡ 0, the existence of weak moment maps implies
the existence of homotopy moment maps. This raises the following question:
Given a weak moment map and assuming φ ≡ 0, does there always exist a
homotopy moment map that restricts to the given weak moment map? The
following proposition answers this question:

Proposition 4.4.1. Let f̂ be a weak moment map, and φ = 0. There exists a
well-defined class [γ]

d̃tot
∈ Hn+1(C̃) such that the following are equivalent:

1. [γ]
d̃tot

= 0 and γ admits a d̃tot-primitive in
⊕n

k=1 dg(Λkg∗)⊗Ωn−k−1(M)
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2. There exists a homotopy moment map f̃ , such that f̃ |Pg
= f̂ .

Proof. Let α̂ = α̂1 + ...+ α̂n ∈ Ĉ be a potential of ω̂ ∈ Ĉ corresponding to f̂
under the bijection in Proposition 4.2.4. Let β ∈ C̃ be any preimage of α̂ under
the map (4.5). Such a preimage exists as the restriction C̃ → Ĉ is surjective.
However, it might not be a potential of ω̃. We can thus consider the element
γ = ω̃ − d̃totβ ∈ C̃. Note that γ ∈ ker(res⊗ id) = dg(∧≥1g∗)⊗ Ω(M).

First of all, we will show that the class [γ]
d̃tot

does not depend on the choice
of β. Indeed, let β and β′ be 2 different preimages of â under the map (4.5).
Then β′ = β + b for some b ∈ ker(res⊗ id), and

γ′ = ω̃ − d̃totβ′ = ω̃ − d̃tot(β + b) = ω̃ − d̃totβ − d̃totb = γ − d̃totb,

i.e., [γ]
d̃tot

= [γ′]
d̃tot

. Moreover, if [γ]
d̃tot

= 0, then γ admitting a primitive
in dg(∧ig) ⊗ Ωn−i(M) does not depend on the choice of β. Indeed, if γ =
ω̃ − d̃totβ = d̃totµ for µ ∈ dg(∧≥1g∗)⊗Ω(M), then choosing a β′ = β + b yields

γ′ = ω̃ − d̃tot(β′) = ω̃ − d̃tot(β + b) = d̃totµ− d̃totb = d̃tot(µ− b).

Now note that b ∈ ker(res⊗ id) = dg(∧≥1g∗)⊗ Ω(M).

To show that (2) ⇒ (1), let’s assume there exists a β that corresponds to a
homotopy moment map, restricting to â. Then, by Proposition 3.4.18, γ =
ω̃ − d̃totβ = 0, i.e., γ = 0 is the γ we need.

Conversely, assume that for some β, γ = ω̃− d̃totβ = d̃totµ for µ ∈ dg(∧≥1g∗)⊗
Ω(M). Then, ω̃ = d̃tot(β + µ), i.e., β + µ corresponds to a homotopy moment
map that restricts to f̂ , since µ ∈ ker(res⊗ id).

Remark 4.4.2. Denote by γi+1 the component of γ in dg ∧i g∗ ⊗ Ωn−i(M).
Note that, since d̃tot = 1⊗ d on dg(∧≥1g∗)⊗ Ω(M), it follows from dtotγ = 0
that dγi = 0 for all γi. Requiring γ to have a primitive µ ∈ dg(∧≥1g∗)⊗ Ω(M)
is equivalent to saying that each γi+1 = dηi, where ηi ∈ dg ∧i g∗ ⊗ Ωn−i−1(M).

Indeed, suppose γ = d̃totµ, where µ ∈ dg(∧≥1g∗)⊗Ω(M). Denote the component
of µ in dg ∧i g∗ ⊗ Ωn−i−1(M) by µi. Then γi+1 = (−1)i+1dµi.

Conversely, let each γi+1 satisfy γi+1 = dηi for some ηi ∈ dg∧i g∗⊗Ωn−i−1(M).
Then d̃tot(

∑
i

(−1)i+1ηi) = γ.

Also note that γn+1 ∈ dg ∧n g∗ ⊗ C∞(M), and therefore γn+1 = dη if and only
if γn+1 = 0.
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Corollary 4.4.3. Let G act on an n-plectic manifold M , let f̂ be a weak
moment map for this action, and let γ be defined as in Proposition 4.4.1. If
Hi(M) = 0 for i ∈ {1, ..., n − 1}, then there exists a homotopy moment map
restricting to f̂ if and only if γn+1 = 0.

Definition 4.4.4. Let f̂ be a weak moment map for an action of G on (M,ω).
A homotopy moment map f̃ is called a strict extension of f̂ if f̃ |Pg

= f̂ , i.e., if
f̃ restricts to f̂ .

Example 4.4.5. For n = 1, i.e., in symplectic geometry, P1,g = g. Therefore,
if a given weak moment map is not already a homotopy moment map, there is
no homotopy moment map restricting to it.

To see this in terms of the results of Proposition 4.4.1, let f̂ be a symplectic
weak moment map. Note that in this case γ = γ2, and so by the Remark 4.4.2
and Proposition 4.4.1, there exists a homotopy moment map restricting to f̂ if
and only

γ(x, y) = −ω2(x, y)− dgf̂(x, y)

= −ω(vx, vy) + f̂([x, y])

vanishes, i.e., if and only if f̂ is already an equivariant moment map, i.e., a
homotopy moment map.

For an example of a symplectic weak moment map that cannot be strictly
extended to a homotopy moment map, consider a Lie algebra g such that
H1(g) = 0. If there exists a homotopy moment map f̃ for the action of g, then
it is unique (see, e.g., [8, §26]). On the other hand, for an arbitrary nonzero
ξ ∈ g∗ the map f̂ := f̃ + ξ, satisfies the condition d(f̂(x)) = −ιvxω for all x ∈ g,
i.e., is a weak moment map, but not a homotopy moment map.

Example 4.4.6. Consider the homotopy moment map f̃ constructed in
Example 4.3.9 for the action of SO(3) on (R3, ω = dx1 ∧ dx2 ∧ dx3), given by
f̃1(e1) = ω(v2, v3), f̃1(e2) = −ω(v1, v3), f̃1(e3) = ω(v1, v2) and f̃2 ≡ 0. This
homotopy moment map coincided with the original weak moment map, i.e., in
this case the original weak moment map admitted an obvious "strict extension"
to a homotopy map. To see this in the context of Proposition 4.4.1, note that
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in this case

γ = ω1 − ω2 + ω3 − dgf̃1 + df̃1

= ω3

= 0,

since in this case ω2(ei, ej)−f̃1([ei, ej ]) = 0 and ω3 = φ = 0 (see the discussion
in Example 4.3.9), i.e., γ = γ3 vanishes in this example, and, by Proposition
4.4.1, there indeed exists a strict extension of the weak moment map to a
homotopy moment map.

Moreover, any weak moment map for this action can be strictly extended to a
homotopy moment map. Indeed, let f̂ = (f̂1, f̂2 ≡ 0) be a weak moment map
for this action. The equations for a homotopy moment map are

d(f̃1(x)) = −ιvxω

f̃1([x, y]) = d(f̃2(x, y)) + ω(vx, vy)

−f̃2(δ(x, y, z)) = −ω(vx, vy, vz).

Note that any f̃2 ∈ ∧2so(3)∗ ⊗ C∞(M) restricts to f̂2 ≡ 0, since P2,so(3) = 0.
Also, any f̃2 ∈ ∧2so(3)∗ ⊗ C∞(M) satisfies the third equation above, since
P3,so(3) = ∧3so(3), and ω3 ≡ 0, i.e., both sides of the third equation above
are zero. Also note that, if the first one of the above equations is satisfied,
then d(f̃1([x, y])) = −ι[vx,vy ]ω = d(ω(vx, vy)), where the last equality is due to
Lemma 3.3.26. Therefore the difference f̃1([x, y])− ω(vx, vy) is a closed 1-form
on R3 for all x, y ∈ so(3). Since H1(R3) = 0, this form is exact, and there
exists a f̃2 satisfying the second of the equations above. Therefore, f̃1 = (f̂1, f̃2),
is a homotopy moment map that restricts to the given weak moment map
f̂ = (f̂1, f̂2 ≡ 0). This result is consistent with the Corollary 4.4.3 and the fact
that γ3 = ω3 − dgf̃2 = 0, since both ω3 and dgf̃2 vanish.

4.5 Equivariance

Definition 4.5.1 ([7], [29]). Let G be a Lie group acting on an n-plectic
manifold (M,ω), and let this action preserve ω. A homotopy moment map
f : g→ L∞(M,ω) is called equivariant if for all g ∈ G, p ∈ ∧kg, and 1 ≤ k ≤ n

fk(Adgp) = Φ∗g−1fk(p), (4.7)
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where Φ : G→ Diff(M) denotes the action of G on (M,ω), and Φ∗g : Ω(M)→
Ω(M) denotes the pullback of differential forms by Φg for all g ∈ G.

It is infinitesimally equivariant or g-equivariant if and only if for all x ∈ g, p ∈
∧kg and 1 ≤ k ≤ n

fk(adxp)−£vxfk(p) = 0, (4.8)

where ad denotes the adjoint action of g on ∧kg. In complete analogy, a
weak homotopy moment map is equivariant if (4.7) holds for all p ∈ Pk,g resp.
infinitesimally equivariant if (4.8) holds for all x ∈ g, p ∈ Pk,g and 1 ≤ k ≤ n.

Remark 4.5.2. Similarly to the proof of Proposition 2.4.7, it can be shown
that for a connected Lie group G, a homotopy (or weak) moment map is
equivariant if and only if it is infinitesimally equivariant. We will treat the case
of infinitesimal equivariance in the sequel, the equivariant working in complete
analogy.

Consider the complex C̃g = (∧≥1g∗ ⊗ Ω(M))g, consisting of all g-invariant
elements of C̃ (recall that in this chapter we denote by C̃ the total complex
of (3.31)). The total differential d̃tot restricts to C̃g, because dg commutes
with the coadjoint action, and d commutes with the Lie derivative. Since the
adjoint action ad : g→ End(∧g) preserves the subspace of δ-closed elements,
it defines an action on Pg and thus on Ĉ = P ∗g ⊗ Ω(M). Again, the total
differential d̂tot restricts to a differential on Ĉg = (P ∗g ⊗ Ω(M))g, i.e., the set of
all g-invariant elements of Ĉ. The coadjoint action of g descends to P ∗g,k, since
P ∗g,k = ∧kg∗

dgΛk−1g∗
, and dg(ad∗xξ) = ad∗xdgξ, hence we can define ad∗x[ξ] := [ad∗xξ].

Lemma 4.5.3. f̃k ∈ ∧kg∗ ⊗ Ω(M) is infinitesimally equivariant iff fk ∈
(∧kg∗ ⊗ Ω(M))g. The same is true for f̂k ∈ P ∗g,k ⊗ Ω(M).

Proof. This follows straight from definitions: ξ ⊗ α ∈ (Λkg∗ ⊗ Ω(M))g iff
x(ξ ⊗ α) = 0 for all x ∈ g, i.e., for all x ∈ g, ad∗xξ ⊗ α+ ξ ⊗£vxα = 0, which is
equivalent to (4.8) when evaluated on p ∈ ∧kg.

We state the following generalization of the well-known formula from Cartan
calculus:

Lemma 4.5.4. For any vector field vi ∈ X(M) and τ ∈ Ω(M) any differential
form, we have:

τ([v1, v2 ∧ ... ∧ vl]) = £v1ιv2∧...∧vlτ − ιv2∧...∧vl£v1τ (4.9)
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Proof. When l = 2, we obtain the well-known formula ι[u,v] = £uιv − ιv£u.
The proof proceeds by induction on l. For details we refer the reader to [17,
Prop. A.3]

We can now show that ω̃ and ω̂ are g-invariant elements of C̃ and Ĉ, respectively:

Lemma 4.5.5. The element ω̃ (resp. ω̂) lies in C̃g (resp. Ĉg).

Proof. We will prove the statement for ω̃, the statement for ω̂, follows as the
image of a g-invariant element under the equivariant map (res⊗id) is necessarily
g-invariant. It is enough to show that ωk ∈ (∧≥1g∗⊗Ω(M))g. We need to show
that

ωk(adxp)−£vxωk(p) = 0. (4.10)

But this follows immediately from Lemma (4.5.4) and the assumption that the
action of g preserves ω.

From the discussion above it follows that correspondences between potentials
and moment maps established in Propositions 3.4.18 and 4.2.4 carry over to
the g-equivariant setting and we have the following

Theorem 4.5.6. Let g act on (M,ω) by preserving ω. The action admits

1. a g-equivariant weak moment map if and only if [ω̂] = 0 ∈ Hn+1(Ĉg)

2. a g-equivariant homotopy moment map if and only if [ω̃] = 0 ∈ Hn+1(C̃g)

Moreover, the respective moments are in one-to-one correspondence with
potentials of the respective cohomology classes.

This theorem recovers the following result

Corollary 4.5.7. [29, Prop. 7.3, Theorem 7.4] g-equivariant weak moment
maps are unique up to elements of

⊕n
k=1

(
P ∗k,g ⊗ Ωn−k+1

cl (M)
)g

. In particular,
if these groups vanish, then g-equivariant weak moment maps are unique.

Remark 4.5.8. We end this section by noting that in symplectic geometry,
considering actions of connected Lie groups, the conditions for being a homotopy
moment map and an equivariant moment map coincide, i.e., a symplectic
homotopy moment map is automatically equivariant.



Chapter 5

Lie 2-algebra moment maps

The material of this chapter is based on a paper ([44]) co-authored by the author
of the thesis, with similar wording in many places.

5.1 Introduction

We saw in Chapter 3 that an n-plectic manifold (M,ω) is equipped with a Lie
n-algebra of observables, which we denoted L∞(M,ω). A (homotopy) moment
map in this case is defined as an L∞-morphism {fk} : g→ L∞(M,ω) such that
d(f1(x)) = −ιvxω. We saw that (Theorem 3.4.13), under certain cohomological
conditions on M , an action of g by Hamiltonian vector fields admits a homotopy
moment map if and only if a certain class in Hn+1(g) vanishes. If this class
doesn’t vanish, we saw that there is an L∞-morphism between a central n-
extension of g and L∞(M,ω) (Proposition 3.4.14). The central n-extension is
a Lie n-algebra, so this motivates us to define and investigate Lie n-algebra
moment maps, i.e., morphisms between Lie n-algebras that are compatible
with the action of g on (M,ω). Another reason why considering Lie n-algebra
moment maps is natural is that since multisymplectic geometry already forces
us to consider an L∞-morphism g→ L∞(M,ω), there is no reason to restrict
ourselves to morphisms from Lie algebras, but rather allow more general objects
on the left-hand side.

In this chapter we consider Lie 2-algebra moment maps and 2-plectic manifolds
for simplicity, but it is reasonable to expect that similar results can be stated
for Lie n-algebras and n-plectic manifolds. We characterize moment maps
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for a Lie 2-algebra h ⊕ g in cohomological terms, consecutively investigating
existence and uniqueness in terms of 3 cochain complexes: the first one being
the tensor product of the Chevalley-Eilenberg complex of h ⊕ g and the de
Rham complex of M , the second one being the Chevalley-Eilenberg complex of
h⊕ g (i.e., a smaller complex than the first one), and finally the last one being
the Chevalley-Eilenberg complex of the Lie algebra g (i.e., the "easiest" complex
to deal with). This chapter is based on [44].

5.2 Homotopy moment maps for Lie 2-algebras

In this chapter, we assume the following set-up:

(M,ω) is a 2-plectic manifold,
g is a Lie algebra,

g→ X(M), x 7→ vx is a Lie algebra morphism, such that the vx are Hamiltonian
vector fields.

We extend Definition 3.4.1. Let h⊕ g be a Lie 2-algebra, whose binary bracket
extends the given Lie algebra structure on g. Recall from Definition 3.2.12 that
a Lie 2-algebra is an L∞-algebra concentrated in degrees 0 and −1, thus we
consider h to be in degree −1, and g in degree 0. We denote the multibrackets
l1, l2 and l3 of this Lie 2-algebra by δ, [ , ] and [ , , ], respectively.

Definition 5.2.1. A homotopy moment map for the Lie 2-algebra h⊕g (or h⊕g
moment map for short) is an L∞-morphism (f1, f2) from (h⊕ g, δ, [ , ], [ , , ])
to (L∞(M,ω), d, [ , ]′, [ , , ]′) such that for all x ∈ g

−ιvxω = d(f1(x)).

Remark 5.2.2. Using Theorem 3.3.29 and Definition 3.2.20, we can see that
explicitly, this means that the components

f1 : g→ Ω1
Ham(M),

f1 : h→ C∞(M),

f2 : ∧2g→ C∞(M),
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satisfy the following equations for all x, y, z ∈ g and h ∈ h ([51, Def. 6.2], see
also [67, Def. 5.3]):

d ◦ f1 = f1 ◦ δ (5.1)

d(f2(x, y)) = f1[x, y]− [f1(x), f1(y)]′

f2(δh, x) = f1[h, x],

f1[x, y, z]− [f1(x), f1(y), f1(z)]′ = f2(x, [y, z])− f2(y, [x, z]) + f2(z, [x, y]).

Note that the image of δ : h → g lies in the kernel of the infinitesimal action
g→ X(M). Indeed, from equation (5.1) it follows that the Hamiltonian 1-form
f1(δ(h)) is exact, implying the vanishing of its Hamiltonian vector field vf1(δ(h)),
which is the infinitesimal generator of the action corresponding to δ(h). As a
consequence, if the infinitesimal g-action is effective (in the sense that the Lie
algebra morphism g → X(M) has trivial kernel) then the unary bracket δ of
h⊕ g necessarily vanishes.

Hence, from now on in this article we assume the following (recall that a
L∞-algebra is called minimal if it has vanishing unary map):

the Lie 2-algebra h⊕ g is minimal.

Remark 5.2.3. Any Lie n-algebra is L∞-quasi-isomorphic to a minimal Lie
n-algebra (see [16, §7] up to and including Cor. 7.5). Hence, this assumption
does not imply any loss of generality. We thank Chris Rogers for pointing this
out to us.

Such a Lie 2-algebra admits a simple well-known description that we now recall
(see [3, Thm. 55] for more details).

Lemma 5.2.4. A minimal Lie 2-algebra corresponds to the following data:

• a Lie algebra g,

• a g-representation h,

• a 3-cocycle c for this representation.

The representation of g on h is given by the binary bracket, and the cocycle for
this representation is given by the ternary bracket.
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Proof. Let h⊕g be a minimal Lie 2-algebra. The higher Jacobi identities reduce
to the following, for h ∈ h and x, y, z, u ∈ g:

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (5.2)

[[x, y], h]− [x, [y, h]]− [[x, h], y] = 0 (5.3)

[x, [y, z, u]]− [y, [x, z, u]] + [z, [x, y, u]]− [u, [x, y, z]] = (5.4)

[[x, y], z, u] + [y, [x, z], u]

[y, z, [x, u]]− [x, [y, z], u]

−[x, z, [y, u]] + [x, y, [z, u]]

The degree 0 component g is a Lie algebra due to (5.2). That h is a representation
of g follows from the fact that [g, h] lands in h, and from (5.3). That the ternary
bracket [ , , ] =: c : ∧3g→ h is a 3-cocycle in the Chevalley-Eilenberg complex
of g with values in h follows from (5.4):

(dgc)(x, y, z, u) = x · c(y, z, u)− y · c(x, z, u) + z · c(x, y, u)− u · c(x, y, z)

− c([x, y], z, u) + c([x, z], y, u)− c([x, u], y, z)

− c([y, z], x, u) + c([y, u], x, z)− c([z, u], x, y) = 0.

5.3 A cohomological characterization of Lie 2-
algebra moment maps

We saw in §3.4.4 that homotopy moment maps for Lie algebra actions can be
characterized in terms of a certain double complex. In this section we obtain
an analogous result for Lie 2-algebras.

Let h⊕ g be a minimal Lie 2-algebra, let ω be a 2-plectic form on a manifold
M , and let g → X(M), x 7→ vx be a Lie algebra morphism taking values in
Hamiltonian vector fields.
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5.3.1 A cohomological characterization

In analogy with §3.4.4, we introduce a double complex that is the tensor product
of the Chevalley-Eilenberg complex of the Lie 2-algebra h⊕ g and the de Rham
complex of the manifold M . Note that we denote the total complex of this
complex (C, dtot), just as we denoted the total complex of the double complex
(3.31) in §3.4.4, but there is an important difference: the de Rham complex of
M is tensored with the Chevalley-Eilenberg complex of the Lie 2-algebra h⊕ g,
not just the Lie algebra g, i.e., the (C, dtot) in this chapter is different from the
one in §3.4.4.

Let (CE(L), dCE(L)) be the Chevalley-Eilenberg complex of the Lie 2-algebra
L = h⊕ g (see Example 3.2.17). Consider the double complex

C := CE(L)⊗ Ω(M),

where (Ω(M), d) is the de Rham complex of M . We denote the resulting total
complex by (C, dtot), where

dtot := dCE(L) ⊗ 1 + 1⊗ d.

Define
ωk : ∧kg→ Ω3−k(M), (x1, ..., xk) 7→ ι(vx1 ∧ ... ∧ vxk)ω,

as in (3.33), and

ω̃ :=
3∑
k=1

(−1)k−1
ωk,

as in (3.34).

Note that ω̃ is a degree 3 element of CE(L)⊗ Ω(M) = C, using the canonical
identification ∧g∗ ∼= S(sg)∗, where s denotes the degree shift defined in (3.3).
The following lemma is analogous to Lemma 3.4.17.

Lemma 5.3.1. ω̃ is dtot-closed.

Proof. It was shown in Lemma 3.4.17 that ω̃ ∈ S•≥1(sg)∗⊗Ω(M) is closed with
respect to the differential D := dg⊗1+1⊗d, where dg is the Chevalley-Eilenberg
differential of g.

The inclusion j : (S•≥1(sg)∗, dg)→ (S•≥1(s(h⊕ g))∗, dCE(L)) = (CE(L), dCE(L))
is a chain map, i.e., j(dg(ξ)) = dCE(L)(j(ξ)) for all ξ ∈ Sk(sg)∗. This follows
from:

1) dCE(L) = −d2 + d3, because the unary bracket of h⊕ g vanishes,
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2) −d2 = dg on elements of Sk(sg)∗,

3) d3(ξ) = 0, because the ternary bracket of h⊕ g takes values in h,

where d2 and d3 are defined as in Example 3.2.17.

Thus, the inclusion (S•≥1(sg)∗ ⊗ Ω(M), D)→ (CE(L)⊗ Ω(M), dtot) is also a
chain map, which means that ω̃ ∈ CE(L)⊗Ω(M) is also closed with respect to
dtot.

Analogously to Proposition 3.4.18 we obtain:
Proposition 5.3.2. There is a bijection

{moment maps for h⊕ g} ∼= {µ ∈ C2 : dtotµ = ω̃}.

More precisely, for all1

µ = µ1|g + µ1|h + µ2 ∈ C2 = (sg)∗ ⊗ Ω1(M) ⊕ ((sh)∗ ⊕ S2(sg)∗)⊗ C∞(M)

we have: dtotµ = ω̃ iff

µ1|g : g→ Ω1
Ham

µ1|h : h→ C∞(M)

µ2 : ∧2g→ C∞(M)

are the components of a h⊕ g moment map.

Note that, by Proposition 5.3.2, the set of moment maps for h ⊕ g forms an
affine space.

Proof. Recall that a moment map φ = (φ1|g, φ1|h, φ2) for (h ⊕ g, [ , ], [ , , ])
has to satisfy the following equalities for x, y, z ∈ g, h ∈ h, by Remark 5.2.2

d(φ1|g(x)) = −ιvxω (5.5)

d(φ1|h(h)) = 0 (5.6)

d(φ2(x, y)) = φ1|g[x, y]− [φ1|g(x), φ1|g(y)]′
(5.7)

φ1|h[h, x] = 0 (5.8)

φ1|h([x, y, z])− [φ1|g(x), φ1|g(y), φ1|g(z)]′ = φ2(x, [y, z])− φ2(y, [x, z]) + φ2(z, [x, y]),
(5.9)

1Here elements of (sh)∗ have degree two, since elements of h have degree -1.
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(sg)∗ ⊗ C∞(M)

(
(sh)∗ ⊕ S2(sg)∗

)
⊗ C∞(M)

(
(sh)∗ ⊗ (sg)∗ ⊕ S3(sg)∗

)
⊗ C∞(M)

...

(sg)∗ ⊗ Ω1(M)

(
(sh)∗ ⊕ S2(sg)∗

)
⊗ Ω1(M)

...

(sg)∗ ⊗ Ω2(M)

...

dCE(L)

dCE(L)

dCE(L)

d d

Figure 5.1: The double complex C = CE(L) ⊗ Ω(M), with highlighted
components of total degree 2, i.e., C2. Recall that elements of (sh)∗ have
degree 2.

where [ , ]′ and [ , , ]′ are the binary and the ternary bracket of L∞(M,ω).

Now let µ ∈ C2. Comparing the components of dtotµ ∈ C3 and ω̃ ∈ C3 with
the same bi-degree, we see that the equation dtotµ = ω̃ is equivalent to the
following five equations:

(1⊗ d)(µ1|g) = ω1

(1⊗ d)(µ1|h) = 0

−(d2 ⊗ 1)(µ1|g) + (1⊗ d)µ2 = −ω2

−(d2 ⊗ 1)(µ1|h) = 0

(d3 ⊗ 1)(µ1|h)− (d2 ⊗ 1)µ2 = ω3

Rewriting these equations in terms of the respective Lie 2-algebra brackets and
evaluating on x, y, z ∈ g, h ∈ h, we get the following equations:

d(µ1|g(x)) = −ιvxω (5.10)

d(µ1|h(h)) = 0 (5.11)

−µ1|g([x, y]) + d(µ2(x, y)) = −[µ1|g(x), µ1|g(y)]′
(5.12)

µ1|h([h, x]) = 0 (5.13)

−µ1|h([x, y, z])− µ2([x, y], z) + µ2([x, z], y)− µ2([y, z], x) = −[µ1|g(x), µ1|g(y), µ1|g(z)]′
(5.14)
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Comparing equations (5.5)-(5.9) and (5.10)-(5.14), we see that (µ1|g, µ1|h, µ2)
is a moment map iff dtotµ = ω̃.

5.4 Existence results and a construction

We use the characterization of moment maps for Lie 2-algebras given in §5.3.1
to obtain existence results and construct explicit examples.

Again, let h ⊕ g be a minimal Lie 2-algebra, let ω be a 2-plectic form on a
manifold M , and let g → X(M), x 7→ vx be a Lie algebra morphism taking
values in Hamiltonian vector fields.

5.4.1 Two immediate existence results

Given a minimal Lie 2-algebra h ⊕ g, the projection h ⊕ g → g is a strict
L∞-morphism; hence, we immediately have:

Corollary 5.4.1. From a g moment map, by composition with the above
projection, one obtains a h⊕ g moment map.

Remark 5.4.2. The inclusion g → h ⊕ g, however, is a not a strict L∞-
morphism in general: it is iff h ⊕ g is a differential graded Lie algebra (see
Example 3.2.11). In particular, moment maps for a differential graded Lie
algebra h⊕ g exist iff g moment maps exist.

Now fix p ∈ M . By Theorem 3.4.13, the existence of a g moment map is
equivalent to [ω3p]g = 0, where ω3p is defined by

ω3p(x, y, z) = ω(vx, vy, vz)|p (5.15)

for all x, y, z ∈ g

When [ω3p]g 6= 0, there exists no moment map for g, but, when M is connected
and H1(M) = 0, there always exists a moment map for the central 2-extension
(see Proposition 3.4.14). Indeed, denote by

R⊕−ω3p g

the Lie 2-algebra with the underlying vector space R⊕ g and the multibrackets
[x, y] := [x, y]g for x, y ∈ g, ternary bracket equal to −ω3p, and all other brackets
being trivial. We paraphrase a special case of Proposition 3.4.14:
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Proposition 5.4.3. If M is connected and H1(M) = 0, then there exists a
moment map for R⊕−ω3p g.

The construction of this moment map is as follows: let γ1 : g→ Ω1
Ham(M) be a

linear map such that γ1(x) is a Hamiltonian 1-form for the Hamiltonian vector
field vx, for all x. Then a moment map γ = (γ1, γ2) is given by:

γ1 : g→ Ω1
Ham(M) (5.16)

γ1 : R→ C∞(M), r 7→ r,

γ2 : ∧2g→ C∞(M) (5.17)

where, for all x, y ∈ g, γ2(x, y) is the unique solution of the equation

γ1([x1, x2])− ι(vx1 ∧ vx2)ω = d(γ2(x1, x2))

with γ2(x, y)p = 0.

From now on we fix a linear map γ1 : g→ Ω1
Ham(M) as above, and consequently

a moment map γ for R⊕−ω3p g.

5.4.2 A constructive existence result in terms of H3(CE(L)).

By Proposition 5.3.2, moment maps for h⊕ g exist iff the cohomology class of
ω̃ ∈ C3 vanishes. In this subsection, which is inspired by [18, §5], we obtain
existence results for h ⊕ g moment maps in terms of the cohomology of the
Chevalley-Eilenberg complex CE(L) of this Lie 2-algebra. Note that the latter
is smaller than C, and thus more manageable. Furthermore, we give an explicit
construction of h⊕ g moment maps.

Fix a point p ∈M . The map

r : (C, dtot)→ (CE(L), dCE(L))

η ⊗ α 7→ η · αp,

is a chain map, where αp ∈ R is declared to vanish if α ∈ Ω≥1(M). Since ω̃
is dtot-closed by Lemma 3.1, its image r(ω̃) = ω3p ∈ CE(L)3 is dCE(L)-closed;
hence, it defines a class [ω3p]CE(L) in H3(CE(L)), the Chevalley-Eilenberg
cohomology of h⊕ g.

Proposition 5.4.4. If a h⊕ g moment map exists, then [ω3p]CE(L) = 0.
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Proof. By Proposition 3.2, if a moment map exists, then [ω̃]C = 0 ∈ H3(C).
Hence, we have [ω3p]CE(L) = [r]([ω̃]C) = 0, where [r] : H3(C)→ H3(CE(L)) is
the induced map in cohomology.

Conversely, we are now going to show that, if [ω3p]CE(L) = 0 and certain
cohomological assumptions on M are satisfied, there exists a moment map for
h⊕ g. Our approach is constructive.

Remark 5.4.5. An alternative approach, which, however, requires stronger
assumptions and is not constructive, is the following. Assume that H1(M) =
H2(M) = 0. By the Künneth theorem, H3(C) ∼= H3(CE(L)) ⊗ H0(M) ∼=
H3(CE(L)), and the map [r] : H3(C)→ H3(CE(L)) induced in cohomology is
an isomorphism. Thus, if [ω3p]CE(L) = 0, then [ω̃]C = 0, and, by Proposition
5.3.2, there exists a moment map.

In what follows, given an element η of

CE(L)2 = (sh)∗ ⊕ S2(sg)∗,

we will denote the first and the second component of η respectively by η|sh and
η|S2sg.

Lemma 5.4.6. An element η ∈ CE(L)2 satisfies dCE(L)η = ω3p iff{
dg(η|S2sg) + d3(η|sh) = ω3p

d2(η|sh) = 0
(5.18)

Proof. The claim follows easily by computing dCE(L)η and comparing the
respective components of dCE(L)η and ω3p in CE(L).

Remark 5.4.7. We will consider this system in detail in §5.5.1. For the
moment we only remark that the second equation is equivalent to η|sh lying in
the subspace [g, h]0 := {ξ ∈ h∗ : ξ(v) = 0, ∀v ∈ [g, h]}.

Lemma 5.4.8. There is a bijection between

{η ∈ CE(L)2 : dCE(L)η = ω3p}

and
{L∞-morphisms f : h⊕ g→ R⊕−ω3p g with f1|g = Idg}.

The bijection maps η = η|sh + η|S2sg to the L∞-morphisms f with components
f1 = (η|sh, Idg) and f2 = η|S2sg.
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Proof. We will denote the ternary bracket of R⊕−ω3p g by [ , , ]�. For f to be
an L∞ morphism f : h⊕ g→ R⊕−ω3p g, its components

f1|g : g→ g

f1|h : h→ R

f2 : ∧2g→ R

must satisfy the following relations for x, y, z ∈ g, h ∈ h:

f1|h[h, x] = 0, (5.19)

f1|g[x, y]− [f1|g(x), f1|g(y)]g = 0

f1|h([x, y, z])− [f1|g(x), f1|g(y), f1|g(z)]� = f2(x, [y, z])− f2(y, [x, z]) + f2(z, [x, y]).
(5.20)

These equalities follow from Definition 3.2.20 and are explicitly stated in [67,
Def. 5.3] for arbitrary Lie 2-algebras.

Clearly (5.19) is equivalent to d2(f1|h) = 0. When f1|g = Idg, rewriting (5.20)
using the definition of the bracket [ , , ]�, we get:

f1|h([x, y, z])− f2(x, [y, z]) + f2(y, [x, z])− f2(z, [x, y]) = −ω3p(x, y, z)

The latter equality can be written as dg(f2) + d3(f1|h) = ω3p. Applying Lemma
5.4.6 concludes the proof.

By composition, we immediately obtain the following result, which also provides
an explicit construction for h⊕ g moment maps.

Theorem 5.4.9. Assume M is connected and H1(M) = 0. Let η ∈ CE(L)2

satisfy dCE(L)η = ω3p. Then
φη := γ ◦ f

is a moment map for h⊕ g, where f is constructed out of η as in Lemma 5.4.8,
and γ is given just below Proposition 5.4.3.

Remark 5.4.10. i) Explicitly, φη is given as follows, where x, y ∈ g, h ∈ h:

φη1(x) = γ1(x)

φη1(h) = γ1(η(h)) = η(h)

φη2(x, y) = γ1(f2(x, y)) + γ2(f1(x), f1(y))

= η(x, y) + γ2(x, y).
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ii) When h = 0, the moment map φη for g agrees with the one constructed in
[7, Prop. 9.6] and the one we sketched in the proof of Theorem 3.4.13. (Note
that when h = 0, the choice of η amounts to a choice of primitive of ω3p in the
Chevalley-Eilenberg complex of g.)

iii) The R⊕−ω3p g moment map γ itself is obtained as in Theorem 5.4.9 from the
solution η(r) = r, η(x, y) ≡ 0, r ∈ R, x, y ∈ g of the equation dCE(L)η = ω3p.
Indeed, under the bijection of Lemma 5.4.8, η corresponds to the identity on
R⊕−ω3p g.

By combining the results of Proposition 5.4.4 and Theorem 5.4.9, we summarize
as follows the existence results obtained in this subsection:

Corollary 5.4.11. Let (M,ω) be a 2-plectic manifold, and g → X(M) a Lie
algebra taking values in Hamiltonian vector fields. Let h⊕ g be a minimal Lie
2-algebra. Fix p ∈M .

If a moment map for h ⊕ g exists, then [ω3p]CE(L) = 0. The converse holds
whenever H1(M) = 0 and M is connected.

5.4.3 A uniqueness result

In this subsection we assume that H1(M) = 0 and M is connected. In §5.4.2
we addressed the existence of moment maps for h⊕ g. Here we show that any
moment map for h⊕ g is cohomologous to one constructed by composition in
Theorem 5.4.9.

Fix p ∈M . Consider again the map introduced in §5.4.2:

r : (C, dtot)→ (CE(L), dCE(L))

η ⊗ α 7→ η · αp.

We remark that the map induced in cohomology in degree 2

[r] : H2(C)→ H2(CE(L))

is an isomorphism. This follows from the fact that, by the Künneth theorem,

H2(C) = H2(CE(L)⊗ Ω(M)) ∼= H2(CE(L))⊗ R,

where we used that CE(L) is concentrated in positive degrees and H1(M) = 0.

To any η ∈ CE(L)2 with dCE(L)η = ω3p in Theorem 5.4.9 we associated a h⊕ g
moment map φη, which we now view as an element of C2.
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Lemma 5.4.12. For all η as above: r(φη) = η

Proof. Using Remark 5.4.10 i) we find:

φη1 |g = γ1|g ∈ (sg)∗ ⊗ Ω1(M)

φη1 |h = η|sh ⊗ 1 ∈ (sh)∗ ⊗ C∞(M)

φη2 = (η|S2sg ⊗ 1 + γ2) ∈ S2(sg)∗ ⊗ C∞(M)

Now note that r(φη1 |g) = 0 by definition of the map r, and r(φη1 |h) = η|sh.

Finally r(φη2) = η|S2sg + r(γ2) = η|S2sg. Indeed r(γ2) = γ2p = 0, because
γ2(x, y) vanishes at point p for any x, y ∈ g by construction (see 5.17). Hence
r(φη) = η|sh + η|S2sg = η.

The difference of any two moment maps is a closed element of C2, by Proposition
5.3.2. Extending [18, Rem. 7.10] we define:

Definition 5.4.13. Two moment maps µ, µ′ ∈ C2 are called inner equivalent
if µ− µ′ = dtotα for some α ∈ C1.

The following proposition gives conditions to ensure that all moment maps are
inner equivalent to those constructed earlier.

Proposition 5.4.14. Let M be a manifold with H1(M) = 0. If µ ∈ C2 is a
moment map for h⊕ g, then µ and φr(µ) are inner equivalent.

Remark 5.4.15. Note that, since r is a chain map, and by Proposition 5.3.2,
if µ is a moment map, then r(µ) is a solution of dCE(L)η = ω3p. Hence φr(µ) is
indeed well-defined.

Remark 5.4.16. In §5.4 we fixed a choice of linear map γ1 : g → Ω1
Ham(M)

providing Hamiltonian 1-forms for the generators of the action. For any η ∈
CE(L)2 satisfying dη = ω3p, the moment map φη constructed in Theorem 5.4.9
depends on this choice. However, making a different choice for γ1 delivers a
moment map that is inner equivalent to φη. This can be seen using Lemma
5.4.12 and Proposition 5.4.14, or also by a direct computation.

Proof. We have r(µ − φr(µ)) = r(µ) − r(φr(µ)) = 0 by Lemma 5.4.12. In
particular, for the map [r] induced in cohomology, we have [r][µ− φr(µ)] = 0.
But the map [r] is an isomorphism in degree 2, hence the cohomology class
[µ− φr(µ)] in H2(C) also vanishes, i.e., µ− φr(µ) = dtotα for some α ∈ C1.
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Proposition 5.4.14 immediately implies:

Corollary 5.4.17. The Lie 2-algebra R⊕−ω3p g is universal in the following
sense: provided H1(M) = 0, any moment map for a Lie 2-algebra h⊕ g is inner
equivalent to one that factors through R⊕−ω3p g.

h⊕ g

$$ **

��

R⊕−ω3p g

��

γ

// L∞(M,ω)

��

g // XHam(M)

5.5 Revisiting the existence results

As earlier, let h ⊕ g be a minimal Lie 2-algebra, let ω be a 2-plectic form on
a manifold M , and let g → X(M), x 7→ vx be a Lie algebra morphism taking
values in Hamiltonian vector fields.

An answer to the existence question for h ⊕ g moment maps was given in
Corollary 5.4.11 in terms of the cohomology of the Chevalley-Eilenberg complex
CE(L) of the Lie 2-algebra. However, the latter complex is quite large and
involved. In this section we rephrase that answer in two ways: one that is
explicit and easily applicable to examples (§5.5.1), and one that is phrased
directly in terms of the Lie 2-algebra (Proposition 5.5.11) rather than in terms
of its constituents (as in Lemma 5.2.4).

5.5.1 An explicit characterization of existence in terms of
H3(g)

In this subsection we answer the question of existence of h⊕ g moment maps in
terms of the familiar Lie algebra cohomology of g.

Corollary 5.4.11 expresses the existence of a moment map for h⊕ g in terms
of the vanishing of [ω3p]CE(L). Recall that the latter condition is equivalent to
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the existence of a solution of the system (5.18). We now formulate the first
equation of the system 5.18 in terms of the Lie algebra cohomology of g.

Lemma 5.5.1. For any ξ ∈ [g, h]0 ⊂ h∗, where [g, h]0 denotes the annihilator
of [g, h], the element d3ξ ∈ ∧3g∗ is dg-closed.

Proof. Recall that d3 was defined in Example 3.2.17. For all x, y, z, u ∈ g we
compute

dg(d3ξ)(x, y, z, u) = −(d3ξ)([x, y], z, u) + (d3ξ)([x, z], y, u)− (d3ξ)([x, u], y, z)

− (d3ξ)([y, z], x, u) + (d3ξ)([y, u], x, z)− (d3ξ)([z, u], x, y)

= ξ(c([x, y], z, u))− ξ(c([x, z], y, u)) + ξ(c([x, u], y, z))

+ ξ(c([y, z], x, u))− ξ(c([y, u], x, z)) + ξ(c([z, u], x, y))

= ξ
(
x · c(y, z, u)− y · c(x, z, u) + z · c(x, y, u)− u · c(x, y, z)

)
= 0,

where in the third equality we used that c (given by the ternary bracket of
h ⊕ g, as in Lemma 5.2.4) is a 3-cocycle in the Chevalley-Eilenberg complex
of g with values in the representation h, and in the last equality the condition
ξ ∈ [g, h]0.

Hence, we can consider the linear map

Ψ : [g, h]0 → H3(g) (5.21)

ξ 7→ [d3ξ]g = −[ξ ◦ c]g.

to the third Lie algebra cohomology group of g.

Lemma 5.5.2. i) Let η ∈ (sh)∗ ⊕ S2(sg)∗ satisfy dCE(L)η = ω3p. Then η|sh
lies in the preimage of [ω3p]g under Ψ.

ii) Conversely, let ξ ∈ [g, h]0 lie in the preimage of [ω3p]g under Ψ. Then we
can find φ ∈ S2sg so that ξ + φ satisfies dCE(L)(ξ + φ) = ω3p.

Proof. If η is a solution to the system (5.18), then the second equation of the
system says that η|sh ∈ [g, h]0 (see Remark 5.4.7), and, taking cohomology
classes in the first equation, we see that this element is mapped by Ψ to [ω3p]g.
The converse is proved by reversing the argument.
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The above lemma immediately implies:

Proposition 5.5.3. [ω3p]CE(L) = 0 iff [ω3p]g lies in the image of Ψ.

We now give an alternative characterization of the map Ψ. Since [g, h] is a
subrepresentation of h, we can look at the quotient representation h/[g, h], which
is a trivial representation. Define cred := pr ◦ c : ∧3g → h/[g, h]. This map
is a cocycle in the Lie algebra cohomology of g with values in h/[g, h], as a
consequence of the facts that c is a cocycle and the quotient map h→ h/[g, h]
is a morphism of representations. Thus

• the Lie algebra g,

• the trivial g-representation h/[g, h],

• the 3-cocycle cred = pr ◦ c

define a minimal Lie 2-algebra. Its underlying graded vector space is (h/[g, h])⊕g,
with h/[g, h] in degree -1, and g in degree 0, and we will refer to this Lie 2-algebra
as the reduced Lie 2-algebra corresponding to h⊕ g.

We can rewrite the map Ψ as follows, using the reduced Lie 2-algebra:

Ψ : (h/[g, h])∗ → H3(g) (5.22)

ξ̃ 7→ −[ξ̃ ◦ cred]g

In other words, Ψ maps ξ̃ to the ξ̃-component of2 [cred]g ∈ H3(g, h/[g, h]) ∼=
H3(g) ⊗ h/[g, h]. Hence, we can rephrase Proposition 5.5.3 by saying that
[ω3p]CE(L) = 0 iff [cred]g has a component equal to [ω3p]g.

Remark 5.5.4. Suppose the representation h is a completely reducible
representation (this happens, for instance, when g is semisimple or is integrated
by a compact Lie group), i.e., h = ⊕mi=1hi is a direct sum of irreducible sub-
representations hi. Note that for every i, either [g, hi] = hi or hi is the trivial
1-dimensional representation. We may reorder the indices so that the trivial
1-dimensional subrepresentations (if any) are exactly h1, . . . , hk for some k ≤ m.
Then hred = ⊕ki=1hi consists of these trivial sub-representations. Decomposing
into components an h-valued 3-cocycle c ∈ ∧3g∗ ⊗ h, we obtain an hi-valued
3-cocycle ci for every i, and cred has components c1, . . . , ck. Hence [ω3p]g lies
in the image of Ψ iff some linear combination of [c1], . . . , [ck] equals [ω3p]g.

2The isomorphism holds since h/[g, h] is a trivial representation of g.
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We now apply Proposition 5.5.3 to obtain existence statements and obstructions
for h⊕g moment maps. The case [ω3p]g = 0 is not interesting, at least if H1(M)
vanishes, since then a g moment map exists (Theorem 3.4.13), and thus a h⊕ g
moment map exist too (Corollary 5.4.1). Hence, now we focus on the case
[ω3p]g 6= 0.

Proposition 5.5.5. Assume [ω3p]g 6= 0. If [cred]g = 0 ∈ H3(g, h/[g, h]), then
there exists no h⊕ g moment map.

Proof. The characterization (5.22) of Ψ makes clear that [cred]g = 0 iff Ψ is the
zero map. By Proposition 5.5.3 we have [ω3p]CE(L) 6= 0. We conclude, using
Proposition 5.4.4.

Note that the assumption [cred]g = 0 is implied by either of the following
conditions:

• The representation h of g satisfies [g, h] = h, for in that case h/[g, h] = 0.

• The cocycle c satisfies3 [c] = 0, because the quotient map h→ h/[g, h] is a
morphism of representations and the induced map H(g, h)→ H(g, h/[g, h])
maps [c] to [cred].

Remark 5.5.6. Assuming [ω3p]g 6= 0, if there exists a h⊕g moment map, then
the representation must satisfy [g, h] 6= h (this follows from the first bullet point
above). An easy general fact about Lie algebra representations then implies
that either h is not irreducible, or h is the trivial 1-dimensional representation.

A positive result is the following:

Proposition 5.5.7. Assume [ω3p]g 6= 0. If H3(g) is one-dimensional and
[cred]g 6= 0, then [ω3p]CE(L) = 0. Thus, if H1(M) = 0, then there exists a
moment map for h⊕ g.

Proof. By the characterization 5.22, the map Ψ is surjective. Hence, the
preimage of [ω3p]g under Ψ is nonempty. By Proposition 5.5.3, we have
[ω3p]CE(L) = 0. We finish, using Theorem 5.4.9.

3In particular, this condition is satisfied when c = 0, i.e. h⊕ g is a graded Lie algebra. In
this case, the conclusion of Proposition 5.5.5 also follows from Remark 5.4.2 and Proposition
3.4.12.
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5.5.2 An alternative characterization of existence

In this subsection we give an alternative answer to the existence question for
h⊕ g moment maps.

Lemma 5.5.8. Let h ⊕ g be a minimal Lie 2-algebra. The following are
equivalent:

a) there is a surjective4 L∞-morphism from h⊕ g to R⊕−ω3p g which is Idg
on g,

b) there is a quotient of h⊕ g which is L∞-isomorphic5 to R⊕−ω3p g by a
morphism that is Idg on g.

Proof. a)⇐ b): just compose the morphism from h⊕ g to its quotient with the
L∞-isomorphism from the latter to R⊕−ω3p g.

a)⇒ b): let f be a morphism as in a), and denote ξ := f1|h. Then s(ker(ξ)) is
a L∞-ideal of h⊕ g, as can be seen from (5.19). Furthermore, f descends to an
L∞-morphism from the quotient (h/ ker (ξ))⊕ g to R⊕−ω3p g. The latter reads
Idg on g, and is an L∞-isomorphism because ξ 6= 0 due to the surjectivity of
f .

Remark 5.5.9. In the proof of “a)⇒ b)” above, the quotient L∞-algebra is
strictly isomorphic to R⊕ξ◦c g by the map (ξ, idg). Under this identification, the
L∞-isomorphism given there can be alternatively described as in [7, Corollary
A.10] (note that [ξ ◦ c]g = −[ω3p]g as elements of H3(g)).

The following statement should be compared with Proposition 5.5.3.

Lemma 5.5.10. Assume [ω3p]g 6= 0. Then [ω3p]CE(L) = 0 iff there exists a
surjective L∞-morphism as in Lemma 5.5.8 a).

Proof. Let η = η|sh + η|S2sg ∈ CE(L)2 satisfy dCE(L)η = ω3p. The element
ξ := η|sh is non-zero, because [d3ξ]g = [ω3p]g 6= 0 by Lemma 5.5.2 i). Hence,
the L∞-morphism f from h⊕ g to R⊕−ω3p g that corresponds to η by Lemma
5.4.8, which satisfies (f1)|g = Idg, has a surjective first component.

For the converse, just apply Lemma 5.4.8.

The following proposition gives an alternative characterization of the existence
of h⊕ g moment maps.

4I.e. the first component is surjective.
5An L∞-isomorphism is an L∞-morphism whose first component is an isomorphism.
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Proposition 5.5.11. Assume [ω3p]g 6= 0. If a h⊕ g moment map exists, then
h⊕ g has a quotient which is L∞-isomorphic to R⊕−ω3p g by a morphism that
is Idg on g. The converse holds if H1(M) = 0.

Proof. Combine Corollary 5.4.11, Lemma 5.5.10 and Lemma 5.5.8.

Example 5.5.12. Suppose that g is the Lie algebra of a simple compact Lie
group. Let R ⊕cge g be the string Lie 2-algebra defined in Example 3.4.16,
with cge being the Lie algebra cocycle corresponding to the 3-form 〈θL, [θL, θL]〉.
Then cge(x, y, z) is given by 〈x, [y, z]〉, and it generates the 1-dimensional vector
space H3(g). Assume that [ω3p]g 6= 0. Then [ω3p]g and c are multiples of each
other, so R⊕−ω3p g is L∞-isomorphic to the string Lie 2-algebra, as one can
see, using [7, Cor. A.10]. By Prop. 5.5.11, if a h⊕ g moment map exists, then
necessarily h⊕ g has the string Lie 2-algebra as a quotient. (The converse holds
if H1(M) = 0.)

5.6 Examples

We now present instances in which moment maps for Lie 2-algebras exist, using
the explicit criteria developed in §5.5.1 .

In this section g is always a Lie algebra, h a g-representation, and c a 3-cocycle
for this representation. (We remind that this triple of data is equivalent to
a minimal Lie 2-algebra structure on h ⊕ g, see Lemma 5.2.4.) Furthermore,
(M,ω) is a connected 2-plectic manifold, which we assume to satisfy

H1(M) = 0,

and g→ X(M), x 7→ vx is a Lie algebra morphism taking values in Hamiltonian
vector fields.

Recall that these data give rise to a reduced Lie 2-algebra as in §5.5.1,
corresponding to a triple (g, h/[g, h], cred). Furthermore, it gives rise to a
3-cocycle ω3p for g as in (5.15) (upon an immaterial choice of a point p ∈M).

Remark 5.6.1. If dim(g) ≤ 2, then there exists a g moment map by Theorem
3.4.13 (since ∧3g = 0), and thus also a h⊕ g moment map by Corollary 5.4.1.
Therefore, when looking for Lie 2-algebra moment maps that do not arise from
Lie algebra moment maps, we should look at Lie algebras with dim(g) ≥ 3.



EXAMPLES 133

5.6.1 Abelian Lie algebras

Lemma 5.6.2. Suppose the Lie algebra g is abelian. Then [ω3p]CE(L) = 0 if
and only if ω3p|U = 0, where U = {u ∈ ∧3g : c(u) ∈ [g, h]}.
Remark 5.6.3. In terms of the reduced Lie 2-algebra, the condition ω3p|U = 0
becomes the following inclusion of kernels of linear maps: ker(cred : ∧3 g →
hred) ⊂ ker(ω3p : ∧3 g→ R).

Proof. Using Proposition 5.5.3 and the fact that g is abelian, we deduce that
[ω3p]CE(L) = 0 iff there exists ξ ∈ [g, h]0 making this diagram commute:

h

ξ

��

∧3g
ω3p

//

c
>>

R

Assume there is such a ξ. Then for u ∈ ∧3g such that c(u) ∈ [g, h] we must
have ω3p(u) = ξ(c(u)) = 0.

Conversely, if ω3p|U = 0, then we can define ξ|im(c) by ξ|im(c)(a) := ω3p(c−1(a))
for all a ∈ im(c) ⊂ h, where c−1(a) is any element in the preimage of a under c.
Such ξ|im(c) is well-defined, because ω3p|U = 0 implies that ker(c) ⊂ ker(ω3p).
By defining ξ|V = 0 on any V such that im(c)⊕ V = h and extending linearly
to the rest of h, we obtain the desired ξ.

Using Corollary 5.4.11 we obtain:
Corollary 5.6.4. Suppose g is an abelian Lie algebra. Then there is a h⊕ g
moment map if and only if ω3p|U = 0, where U = {u ∈ ∧3g : c(u) ∈ [g, h]}.
Example 5.6.5. Consider (M,ω) = (R3, dx ∧ dy ∧ dz). Let the abelian Lie
algebra g = R3 act on M = R3 by translations. This action preserves ω,
therefore, the action is generated by multisymplectic, hence Hamiltonian, vector
fields. Using Remark 5.6.3 and noticing that dim(∧3g) = 1, we can see: a
moment map for h⊕ g exists if and only if cred 6= 0. Here are some concrete
simple cases illustrating this result:

• Let h be any representation of g = R3, and c = 0 the zero cocycle. Since
cred = 0 in this case, we have no moment map for (h ⊕ g, [ , ]g, c ≡ 0).
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On the other hand, if h is a trivial representation and c is any non-zero
cocycle, then cred 6= 0, and we have a moment map for h⊕ g.

• For representations h of g = R3 such that [g, h] = h, there is no moment
map for h ⊕ g, because cred = 0. This is the case, for example, for the
representation

g→ End(h), ei 7→ λiId

where the ei are basis elements of g, and at least one of the λi ∈ R is
non-zero.

5.6.2 Other examples

We present two examples in which the Lie algebra g is not abelian. In both of
them, just as in Example 5.6.5, the action is given by left translation on a Lie
group with vanishing first and second cohomology.

Example 5.6.6 (Connected compact simple Lie groups). As in Example
3.3.8, let G be a connected compact simple Lie group acting on itself by
left multiplication. Recall that H1(G) = H2(G) = 0 (see, e.g., [6]). The Lie
algebra g of such a group is equipped with a skew non-degenerate trilinear form

θ(x, y, z) := 〈x, [y, z]〉

called Cartan 3-cocycle, where 〈 , 〉 is the Killing form. Let ω = 〈θL, [θL, θL]〉
be as in Example 3.3.8; ω is the left-invariant 2-plectic form on G which equals
θ at the identity element e. The action is Hamiltonian, and [ω3e]g = [θ]g 6= 0 in
H3(g) ∼= R.

Thus, if h is any representation of g and c a 3-cocycle for this representation,
Proposition 5.5.5 and Proposition 5.5.7 imply:

There exists a moment map for h⊕ g iff [cred]g 6= 0.

Note that Remark 5.5.4 applies, and that using the notation introduced there,
the condition [cred]g 6= 0 can be expressed as follows: [ci] 6= 0 ∈ H3(g) for some
i ∈ {1, . . . , k}.

Example 5.6.7 (The Heisenberg Lie algebra). Let g be the Lie algebra of the
Heisenberg group G, i.e.,

g =
{0 a b

0 0 c
0 0 0

 : a, b, c ∈ R

}
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Below we will need the following claim: There is a canonical isomorphism of
1-dimensional vector spaces ∧3g∗ ∼= H3(g).

As a smooth manifold, G ∼= R3, hence H1(G) = 0. Let G act on itself by left
multiplication, and let ω be a left-invariant volume form: thus, the generators of
left translations are multisymplectic and, since H2(G) = 0, Hamiltonian vector
fields.

Consider the representation of g on h := R3 by matrix multiplication, and let c
be any 3-cocycle for this representation. Clearly, [g, h] $ h, and the quotient
h/[g, h] is isomorphic to R. We have [ω3p]g 6= 0 for any point p, since ω is
a volume form, and by the above claim. Since H3(g) is 1-dimensional and
[ω3p]g 6= 0, Proposition 5.5.5, Proposition 5.5.7 and the above claim imply:

There exists a moment map for h⊕ g iff cred 6= 0.

To conclude, we prove the above claim. Any c ∈ ∧3g∗ is closed by dimension
reasons, yielding the surjective map ∧3g∗ → H3(g), c 7→ [c]g. This map is
injective: for all ξ ∈ ∧2g∗ we have dgξ = 0: using a basis X,Y, Z of g satisfying
the bracket relations [X,Y ] = Z, [X,Z] = [Y,Z] = 0, we have

(dgξ)(X,Y, Z) = −ξ([X,Y ], Z) + ξ([X,Z], Y )− ξ([Y,Z], X) = 0.
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